
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

STRATEGIES UTILIZED IN COMPUTER PROBLEM SOLVING AND
OBJECT-ORIENTED PROGRAMMING

By

Naeem Zaman

A DISSERTATION

Submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor o f Philosophy

Completed March 10,2003

Commencement June, 2003

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

UMI Number: 3080162

Copyright 2003 by
Zaman, Naeem

All rights reserved.

UMI’
UMI Microform 3080162

Copyright 2003 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

©Copyright by Naeem Zaman
March 10, 2003.

All Rights Reserved

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Doctor o f philosophy dissertation of Naeem Zaman presented March 10, 2003.

APPROVED

Major P ro f^ o r, representing Science Education

Chair of

Dean of Graduate

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Naeem Zaman, Author

■ -

Department Science and Mathematics Education

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

ACKNOWLEDGEMENTS

My thanks and appreciations go to all committee members: Dr. Maggie

Niess, Dr. Dianne Erickson, Dr. Larry Enochs, Dr. Tadepali Prasad and Dr.

Thomas Wolpret.

My special thanks to Dr. Maggie Niess for her advice, guidance and

patience. She has been a great source of encouragement throughout my education

at Oregon State University. 1 thank her for believing in me and making a difference

in my life and those who depend on me.

Many thanks to my parents, Miwako Kimura, children, sisters, brother and

many other important individuals in my life who have encouraged me.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

TABLE OF CONTENTS

CHAPTER I: THE PROBLEM...1

Introduction...1

Statement o f the Problem .. 7

Significance o f the S tudy.. 8

CHAPTER II: REVIEW OF THE LITERA TU RE... 9

Introduction.. 9

Curriculum and Goals for the Introductory Course in Computer Science 10

Students Learning o f Computer Science at the College L evel..................................17

Student Learning o f Programming and Problem-solving Skills 21

Discussion and C onclusion...25

Recommendations.. 28

CHAPTER III: DESIGN AND M ETHOD ...30

Purpose..30

S etting ...30

M ethod..32

Subjects.. 34

Data Sources...35

Classroom Observations...35
Instructor Interview s.. 37
Classroom Documents.. 38
Student Interviews...38
Researcher’s Journa l.. 43

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

TABLE OF CONTENTS (Continued)

Data Analysis.. 44

Researcher... 46

CHAPTER IV: ANALYSIS OF DATA... 48

Introduction... 48

Instructor T im ...48

Tim’s Plans for Instruction and Assessment.. 49
Tim’s Instruction and Assessment.. 54
Comparison of Plans vs. Actual Implementation...66

Student Profiles...68

Adam...69
Ann..77
M el..86
Jose... 92

Instructional Strategies and their Impact on Student Learning............................... 99

CHAPTER V: DISCUSSIONS AND CONCLUSIONS..109

Introduction... 109

Interpretation and Discussion of the Results..111

Limitations of the study... 124

Implications for Computer Science Education..126

Recommendations for Future Research... 128

REFERENCES..132

APPENDICES..137

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

LIST OF APPENDICES

Appendix Page

A. Student Informed Consent Form ..138

B. Instructor Informed Consent F o rm ... 139

C. Student Background Information.. 140

D. Instructor Interview Protocols..142

E. Student Interview Protocols... 145

F. Weekly Lesson Contents...147

G. Formal Interview Problem s.. 154

H. Sample Class Work Problems.. 163

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r rep roduction prohibited without perm iss ion .

www.manaraa.com

STRATEGIES UTILIZED IN COMPUTER PROBLEM SOLVING AND
OBJECT-ORIENTED PROGRAMMING

CHAPTER I

THE PROBLEM

Introduction

Teaching and learning in the introductory course o f the undergraduate

computer science curriculum often sparks debate about what and how to teach novices

(Baldwin & Macredie, 1999). Because of this, prominent professional associations of

computer science such as Academic Computing Machinery (ACM), the ACM's

Special Interest Group on Computer Science Education (SIGCSE), and the Institute of

Electrical and Electronic Engineers, Computer Society (IEEE/CS) have extended

considerable effort both discussing and researching the teaching and learning of

novices in the introductory course in computer science (CS). This is true in part

because studies (Greer, 1986; Taylor & Mounfield, 1991) found that students who are

successful in an introductory level CS course remain successful in the subsequent CS

discipline courses.

The introductory course in computer science warrants a continued assessment

and understanding of teaching and learning strategies, the curriculum, and its content.

This assessment and understanding is needed due to the changing forces in the field

including technological advancements in hardware and software tools, societal needs,

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

and shifts in computer science paradigms (ACM & IEEE/CS, 1965, 1968, 1978, 1991,

2001).

The role o f programming in the introductory course also generates an

interminable debate within the computer science education community. Some have

argued that the focus o f introductory courses in the computer science discipline should

only be on teaching and learning programming. However, others suggest that the

introductory course should not only introduce students to programming, but should

also offer a broad overview of the computer science discipline by including sub­

disciplines such as social sciences within the context o f computer science (Tucker &

Wagner, 1994).

Varying views also exist on the implementation strategies for the introductory

computer science course. One such view holds that CS departments should teach

problem-solving strategies in addition to programming, while others argue that only

the syntax and semantics o f a programming language should be highlighted

(Shackleford & Badre, 1993).

With these diverse concerns and competing debates regarding teaching and

learning in the introductory course of CS, there has been a little agreement as to which

objectives and/or goals CS educators should adopt in their introductory course.

However, during the past three decades, premier CS associations such as ACM and

IEEE/CS provided invaluable guidelines and recommendations for the typical

goals/objectives for the introductory course in CS at the undergraduate level (Baldwin

& Macredie, 1999).

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

3

The latest complete recommendation by ACM and IEEE/CS entitled

Computing Curricula 2001, was developed in the United States in consultation with

educational institutions and was designed to satisfy the requirements o f the Computer

Science Accreditation Commission (CSAC) and the Computer Science Accreditation

Board (CSAB). Many CS departments in the United States and abroad have already

“endorsed” the Curricula 2001 and have implemented it as a model both in their

undergraduate CS curriculum and in their introductory courses (Baldwin & Macredie,

1999; ACM & IEEE/CS, 2001). In addition, the American Association of Colleges

([AAC], 2002) also concurred with ACM and IEEE/CS recommendations (ACM,

2001).

In ACM’s curriculum recommendations (ACM & IEEE/CS, 1991; ACM &

IEEE/CS, 2001) three goals/objectives were identified to address the major concern

with respect to teaching and learning in the introductory course in CS. First, they

stated that students have to team the algorithmic problem solving and programming

skills central to the CS discipline. Second, they emphasized the importance of

teaching students how to transfer and apply programming and problem-solving skills

to solve real world problems. Third, they reinforced the importance o f showing

students how to develop cognitive (thinking) models (ACM & IEEE/CS, 1991; ACM

& IEEE/CS, 2001).

McCauley and Manaris (2000) found that across the United States, nearly all

CS departments have adopted a programming-first model, recommended by the ACM,

to teach introductory computer science courses. Furthermore, their study found that

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

4

CS departments used two major programming paradigms, imperative and object-

oriented programming (OOP), to teach the introductory course. Dann (1990) stated

that a programming language “encompasses a set of assumptions about how the

programmer will think about what can be done. These assumptions are intricately

linked to the paradigm — a distinctive conceptual organizing principle -- on which the

language is based.” (Dann, 1990, P.70). Some languages allow either a single

paradigm approach or a combined paradigm approach. For example, Stroustrup

(2001) states that C++ supports a multi-paradigm framework, i.e. imperative and

object-oriented, whereas the C programming language only supports the imperative

paradigm. The imperative paradigm demands learners to think of a problem solution

in terms of “sequential and ordered steps,” whereas, the object-oriented paradigm

demands to think problem solutions in terms of objects (Dann, 1990; Ross, 1997).

In the past, computer science departments viewed the imperative paradigm as a

better way to meet the goals of the introductory course in CS. The reasoning for this

belief was to help students leam computer programming and computer problem

solving (CPS), thus laying a foundation for subsequent CS courses.

The popularity of using the imperative paradigm is waning. McCauley and

Manaris (2000) reported recent trends among accredited colleges and universities

showing that the majority o f CS programs in the United States are now using OOP, to

teach programming in their introductory CS courses. For example, in their study of

151 CS departments accredited by the CSAC/CSAB, McCauley and Manaris (2000)

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

found that during the 1999-00 academic year, 83% of CS departments were using

OOP, whereas, in 1995-96 academic year, 36% were using OOP.

The rationale for this switch from the imperative paradigm to the object-

oriented paradigm among CS departments includes: (1) new innovations and

technological changes in computer hardware and software (ACM & IEEE/CS, 2001);

(2) a general paradigm shift in the CS field from imperative to OOP (McCauley &

Manaris, 2000); (3) curriculum recommendations made by the ACM and IEEE/CS,

CSAB, and CSAB to include OOP in the introductory course in computer science

(ACM & IEEE/CS, 2001; CSAB, 2003); and (4) adoption of object-oriented

languages in the Advanced Placement (AP) tests in computer science by the

Educational Testing Services (ETS, 2003).

As a result of the shift from the imperative paradigm to OOP in CS

departments, a large number of beginning students are now learning OOP in their

introductory CS courses. Proponents maintain that OOP “lends itself to the natural

attributes of the thinking process,” making it easier for beginning students to leam to

solve problem (Dann, 1990; Goldenson, 1996; Ross, 1997; Willis, 1999). However,

OOP languages may be difficult to leam for novice students (Corrittore &

Wiedenbeck, 1999; Rist, 1995). Two main issues were identified by Dann (1990).

“First, the student may not be adequately prepared or have the cognitive skills required

in the programming process. Second, the student may possess a cognitive style which

is unsuited for the imposed language and methodology” (Dann, 1990, p. 100).

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

6

In spite of OOP’s popularity and its adoption among CS departments, and the

impact this paradigm change has on beginning computer science students, relatively

little scientific evidence exists about how students develop abilities and strategies to

apply CPS skills in an OOP environment. Thus far, the research has focused on

investigating the novice versus expert programmers in computer programming

(Corritoree & Wiedenbeck, 1999; Lee, Pennington & Rehder, 1995). Other studies

(Allwood & Bjorhag, 1990; Corritore & Wiedenbeck, 1999; Ebrahimi, 1994; Rist,

1995) have investigated only few aspects o f OOP, rather than studying the program

development process to create a problem solution in its entirety. Moreover, the

existing research has focused on the student learning process of computer

programming and CPS without considering the important element of instruction in the

student learning process (Allwood & Bjorhag, 1990; Corritore & Weidenbeck, 1999;

Ebrahimi, 1994; Pennington, Lee & Rehder, 1995; Rist, 1995).

Other studies (Choi, 1991; Lee & Thompson, 1997; Mains, 1997; Knox-Quinn,

1995; Willis, 1999) focused on the effects of OOP and imperative programming

languages on students’ problem solving skills “without having fundamental

knowledge about students’ learning processes” involved in OOP (Ahmed, 1992). This

knowledge is needed since the evidence on the effects o f programming on the

problem-solving skills is inconclusive (Ahmed, 1992; Palumbo, 1990; Singh &

Zwringer, 1996).

A study is needed to identify students’ strategies and skills used in solving

computer problems in a beginning CS course with an introduction to OOP. Clarifying

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

7

students’ learning processes may describe how students leam to program a computer

by solving computer problems and how they connect learning to the instruction they

receive.

Statement of the Problem

The purpose o f this study was to describe how novice students learned

computer problem solving in a beginning CS course with an introduction to OOP and

what knowledge they obtained about OOP and CPS as a result of their experiences.

Additionally, this exploratory study attempted to connect the instruction provided to

the students to the development o f their computer problem solving and programming

skills.

The study focused on the following questions:

(1) What instructional strategies characterized a beginning computer science

course with an introduction to object-oriented programming at the college level to

engage students in computer problem solving?

(2) How did novice students solve computer problems as a result of instruction

in a beginning computer science course with an introduction to object-oriented

programming at the college level?

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Significance of the Study

8

One of the most significant goals in CS education is to teach students

programming and problem-solving skills in their beginning course in CS (ACM &

IEEE/CS, 1968, 1978, 1991,2001). By using detailed descriptions of students’

strategies and collecting other descriptive data about student learning, this study aimed

to identify how students approached computer problems in a beginning CS course

with an introduction to OOP. This study also guides future directions for CS

programs using OOP as the environment for developing students’ ability to solve

computer programming problems.

In addition, this study provides a more detailed description of instructional

practices, and investigates how novice students apply CPS strategies in a beginning

CS course with an introduction to OOP. These insights are important because they

help instructors better identify what situations provide positive and/or negative

experiences while students are engaged in programming and problem solving.

Finally, describing student experiences helps CS departments design more effective

instructional experiences for beginning programming students and can provide a

foundation for further research in answering questions related to the effectiveness of

the introductory CS courses.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

9

CHAPTER II

REVIEW OF THE LITERATURE

Introduction

The explicit goal of the introductory course in undergraduate computer science

(CS) education is to teach computer problem solving and programming (ACM &

IEEE/CS, 1991; ACM & IEEE/CS, 2001). However, research indicates that students

have difficulty learning the required computer problem solving (CPS) and

programming skills (Corritore & Weidenbeck, 1999). This difficulty in learning CPS

and programming skills may be due to the “educator’s lack of understanding” of how

students are applying CPS strategies and programming processes. Recent emphasis on

object-orientated programming (OOP) and its impact on beginning students warrant

more investigation about students who take an introductory CS course. Until now,

relatively little research has been conducted on how students leam to solve computer

problems in a programming environment using OOP and what connection students

make with the instruction they receive.

The primary purpose o f this study was to obtain descriptive information of

how beginning students’ learned and applied CPS and programming strategies as a

result o f their experiences in the first course in CS with an introduction to OOP.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

10

Additionally, this study attempted to analyze the instruction provided to students in a

beginning CS course.

This chapter reviews the previous research literature in the following sections:

(1) curriculum and goals for the introductory course in computer science (2) students’

learning o f computer science at the college level (3) students’ learning of computer

programming and problem-solving.

Curriculum and Goals for the Introductory Course in Computer Science

This section looks at the introductory college-level course in computer science

through its past and present by summarizing efforts of Academic Computing

Machinery (ACM) to guide the introductory CS course curriculum through its model

curriculum. Since its inception, the academic discipline of computer science has

adapted a programming-first model. The programming-first model is aimed to

develop the fundamental skills o f computer programming and computer problem

solving among beginning students of computer science (ACM & IEEE/CS, 1965,

1968, 1978, 1991,2001).

The primacy of the programming-first model can be seen as far back to 1968

when the ACM first recommended a course entitled “Introduction to Computing.”

Since then, the progression towards including programming and programming-related

topics into the introductory course curriculum has remained dominant over forty years.

Furthermore, in 2001 the members of the ACM Curriculum Task Force predicted that

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

11

the “programming-first model is likely to remain the dominant part of the introductory

course curriculum for the foreseeable future” (ACM, 2001, p. 2 1). The members of

the task force provided two reasons for the importance o f maintaining a programming-

first approach: “(1) programming is an essential skill that must be mastered by anyone

studying CS; (2) placing it early in the curriculum ensures that students have the

necessary skills when they enroll in intermediate and advanced courses” (ACM &

IEEE/CS, 2001, p. 17).

Despite the ACM’s support for a programming-first model and its dominance in

introductory CS courses; it has instigated arguments among CS educators. The

following arguments represent the most significant concerns about the programming-

first model (adapted from ACM, 2001: 3).

1. The recommendations to use a programming-first model in the introductory

course by the leading curriculum developers such as ACM and its widespread

adoption by CS departments is viewed by critics as “computer science equals

programming” where computer science theory and its relationship to the broader

cultural and societal issues has been ignored. Furthermore, critics of the model

believe that limiting the scope of computer science to just programming may lead

beginning students to believe that “theory is irrelevant to their educational and

professional needs” (ACM, 2001).

2. In many implementations o f the programming-first model, the focus

remains on the syntactical details of a programming language in use. However, this

emphasis on syntax comes at the “expense” of not teaching beginning students’ proper

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

12

problem-solving strategies. As a result, students use an “ad hoc process of trial and

error” rather than understanding the underlying “essential algorithmic model that

transcends from a particular programming language” (ACM, 2001).

3. The programming-first model can be detrimental to both students with no

prior computer background and to students with significant computer operating

experience. Students with no prior computer experience frequently feel

“overwhelmed” with a cognitively challenging task such as programming. Whereas

those with the prior computer background might feel they have the necessary skills to

deal with programming a computer. As a result, those students may feel overconfident

with their computer operating background and “simply continue the bad habits”

referred to as computer hacking (ACM, 2001).

4. The programming-first model does not appeal to non-majors because it

reinforces the image that problem solving can only be approached through

programming. However, the latest advancements in software tools have proven the

contrary. New application programs have won the image o f being comprehensive and

dynamic among many non-majors using computer as a problem-solving tool (ACM,

2001).

In spite of all these concerns, McCauley and Manaris (2000) in their study

found that almost every CS department in the United States had implemented the

programming-first model. The curriculum task force established by ACM also stated

that the programming-first model “has proven to be extraordinarily durable” (ACM,

2001, p. 16). Certain factors have contributed to the adoption o f programming-first

Reproduced with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

13

model among computer science departments: “(1) programming is a prerequisite for

many advanced courses in computer science. Curricular strategies that delay mastery

of fundamental programming skills make it harder for students and the CS

departments to ensure student success in advanced CS courses; (2) students often like

programming more than other aspects of the field. Programming-based courses

therefore tend to attract more students to computer science; and (3) programming

courses offer skills and training that meets many of the needs expressed by students,

their near-term employers, and non-CS faculty” (ACM, 2001, p. 4).

ACM (2001) has also recognized certain curriculum implementation strategies

for the programming-first model. These implementation strategies serve as models for

the introductory course in computer science. A brief description of each of the model

implementations is as follows: (adapted from ACM, 2001)

Imperative-first

The imperative-first strategy utilizes structured programming concepts. The

programming languages often used for the implementation of the imperative-first

strategy are C, C++ and Pascal. This implementation strategy “focuses on the

imperative aspects of the language in use: expressions, control structures, procedures

and functions” (ACM, 2001, p. 10). The primary disadvantage of adopting an

imperative-first strategy is that because it is not the most commonly practiced

paradigm among CS departments, it leaves students to “face difficulties later adopting

an object-oriented approach. However, others counter that students who have grown

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

14

used to working in an object-oriented language will chafe at the idea of learning to do

without those features that makes object-oriented programming so powerful” (ACM,

2001, p. 10).

Objects-first

Object-first implementation strategy suggests that introductory courses in CS

initiate students immediately with object-oriented programming concepts. At a later

stage, control structures such as selection and repetition are introduced within the

context of OOP to students. Proponents of object-first implementation strategy see it

as fulfilling the needs of their students in subsequent CS courses. However, opponents

of the object-first strategy raise similar objections to the object-first implementation as

the programming-first model (ACM, 2001).

Breadth-first

Introduced in the Curriculum 91 (ACM, IEEE/CS, 1991) the breadth-first

strategy envisioned that “the first courses in computer science would not only

introduce programming, algorithms, and data structures, but introduce material from

all the other sub-disciplines as well, making sure that mathematics and other theory

would be well integrated into the lectures at appropriate points” (Denning, 89, p. 107).

The breadth-first strategy offered CS educators a response to the concerns regarding

the programming-first model. For example, certain CS educators and researchers

viewed the focus of programming only in the introductory course as introducing

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

15

students to the discipline with a “limited view” rather than a “holistic and/or broader

view.” However, a successful implementation o f the breadth-first implementation

strategy by a significant number of educational institutions has not been materialized

(ACM, 2001). A sample course description o f a “Breadth-First” introductory

computer science course is as follows:

This course offers a broad overview of computer science designed to provide
students with an appreciation for and an understanding of the many different
aspects of computer science. Topics include discrete mathematics, an
introduction to programming languages, algorithmic problem solving, analysis
of algorithmic complexity, basic concepts in hardware, operating systems,
networks, graphics, and an overview of the social context o f computing. No
background in computer science is assumed or expected. The course is
intended for both students who expect to major or minor in computer science
as well as for those not planning on taking additional course work (Tucker,
1991, p.35).

A Igorithms-first

The algorithm-first implementation strategy introduces students to the

computer problem solving and/or algorithmic process to leam the fundamentals o f the

computer science discipline. In this approach, no executable programming language is

used to teach programming. However, the major emphasis is on non-executable,

language-independent algorithm development techniques such as writing pseudocodes

or developing program flowcharts. The ACM (2001) reports two major advantages to

the algorithm-first approach: “(1) for non-majors, it permits some access to the science

o f computer science; and (2) for computer science majors, it permits them to

encounter appropriate aspects of theory o f problem-solving from the very beginning of

their course o f study. However, the algorithm-first implementation strategy demands

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

16

an extraordinarily time consuming effort from the faculty to grade” (ACM, 2001,

P-16)

Functional-first

The Functional-first approach was developed at the Massachusetts Institute of

Technology (MIT) during the 1980s. In it. Scheme, a functional language, is used to

teach the functional-first implementation strategy of the programming-first model.

This approach places less emphasis on the syntax of the programming language and

more on the problem solving. The disadvantage is that the Functional-first approach is

viewed by students as "outside of the mainstream” computer science since Scheme is

not a popular language (ACM, 2001, p. 17).

Hardware-first

In the hardware-first approach, students are first introduced to the hardware

aspects of computer such as switching circuits and registers. This instruction is then

followed by computer programming using a higher-level language such as Pascal or C.

Among the advantages of the hardware-first approach is that students leam the theory

and processes of computation with minimal details of the syntax. However, students

are placed at a disadvantage since “the hardware-first approach is also somewhat at

odds with the growing centrality o f software and the tendency of increasingly

sophisticated virtual machines to separate the programming process from the

underlying hardware.”(ACM, 2001, p. 18)

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Students Learning of Computer Science at the College Level

17

This section reviews the literature on students’ learning processes in

introductory computer science courses (focusing on computer programming and

computer problem solving). It wasn’t until the mid I980’s that the profession began

seriously studying students’ learning processes in CS courses. As part of this initial

movement Anderson and colleagues (1983, 1987) identified the gradual learning

model (cited in Nelson, Irwin & Monarchi, 1997). According to the gradual learning

model, the beginning student achieves programming knowledge in three stages. In

the first stage, the student gains declarative knowledge where he/she attempts to

leam the “basic concept definitions, methods, and skill performance needed in

programming.” During the second stage, the student achieves procedural knowledge

by utilizing examples extensively, which guides him/her to apply declarative

knowledge in the problem-solving process. During the third stage, as a result of

practice and experience, the learner attains the needed procedural knowledge and

moves towards handling more challenging computer problem solving (Nelson, Irwin

& Monarchi, 1997).

Corritore and Wiedenbeck (1999) examined how subjects comprehended

programs when making modifications to procedural and object-oriented programs.

The sample for the study included 30 participants. Fifteen participants modified a

program in C++, and 15 modified a program in C.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

18

During a two 2-hour session, participants studied and modified programs. In

another session, they completed a second and third modification. The statistical

analysis o f variance (ANOVA) revealed that significant main effects of knowledge

category, interaction of knowledge category and paradigm were found. Follow-up

analysis on the interaction revealed that between paradigms, procedural participants

had significantly more knowledge of operation than object-oriented participants.

However, object-oriented participants had more knowledge of structure (selection,

repetition) than procedural participants.

Allwood and Bjorhag (1990) attempted to identify how students debugged

Pascal programs. The sample for the study included eight undergraduate students

from the computer science department at the University of Gotenborg, Sweden.

Seven of the eight students were males and one was female.

A computer program was provided to the students. Students were asked to

think-aloud during the experiment. Researchers used a coding sheet to develop an

analysis of the “verbal descriptions” of student responses to detect errors.

Results indicated that students made a variety of errors. The authors described

the results o f the study using different episodes. Students spent 67% of their time (on

average) in evaluative episodes. The most common evaluation episodes were

“triggered as a reaction to a test value,” 23% (range 0% - 47%), followed by

spontaneous episodes, 6% (range 0% - 16%), and hint episodes, 4% (range 0% - 16%).

Categories were used by the authors to code the subjects’ response to triggering event.

Actions taken in response to triggering events by students included: “(1) interpreting

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

19

meaning of the error message, (2) following flow of information in the program, (3)

describing symptoms, (4) hypothesizing errors, (5) testing, (6) planning changes to the

program, (7) experiencing general dissatisfaction, and (8) making changes to the

program.”

Ebrahimi (1994) investigated, novice programming errors, error types, and the

causes of errors based on language constructs and plan composition in different

programming languages. The sample for the study included 80 undergraduate students

enrolled in computer programming courses at State University o f New York, College

at Old Westbury. Students were divided into four groups, each containing 20 students.

One group attended a programming course in Pascal, one in C, one in FORTRAN and

one in LISP.

Two experiments, one in language constructs and one in plan composition,

were conducted on each group. The purpose of students’ evaluations was to examine

their understanding of the language constructs. For both experiments, the students

were asked to write a program named “rainfall” which read the amount of rainfall for

each day. Students verbalized their thoughts while developing program solutions

during the interviews.

Results of the study for the [language constructs] revealed that in Pascal and C

programming languages students made most errors in the use o f IF statements. For the

FORTRAN programming language, the most common errors were made in

assignment statements. In LISP, students made errors in the use of logical operators.

The most common errors in plan composition for all languages were: “(1) Guard IF:

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

20

when using IF statements, the need to check for special situations, such as division by

zero; (2) Update: students had problems with both improper and unnecessary

updating o f variables; (3) Loops: students had difficulty with what type of loop to

use, how to terminate the loop, and the structure of the loop.” The results of the plan

composition experiment showed that students had difficulty composing plans together.

Lee, Pennington and Rehder (1995) studied how expert procedural and object-

oriented designers developed program design activities compared to how novice OOP

designers performed the same task. The sample for the study included 10 subjects (8

males and 2 females). All subjects received a “swim meet competition” problem. The

problem involved designing a scoring system, which could record scores and then

report results for individual competitors and teams in the swim meet competition.

Subjects were asked to read the swim meet competition problem and then complete a

design.

The data analysis included transcribing all verbal protocols and “annotating

each subject’s diagramming activity.” The results of novice object-oriented designers

revealed that they spent more time in describing objects and significantly less time in

designing the problem than did the experts. Novices also tended to create input and

output procedures as did the experts.

Rist (1995) attempted to discover the common strategies used for object-

oriented program design among university students. The sample for the study

included nine students at three universities. Each student designed and coded

solutions for four problems. Students were given a problem description and asked to

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

21

design and code a solution on paper, in either Eiffel or C++. Subjects were asked to

verbalize their thoughts while they worked, and all interview sessions were video­

taped.

The results showed that all nine subjects used the global code generation

strategy, and designs were typically goal-oriented (one goal at a time), and top-down

within a goal. The main design strategy was forward, procedural design. Subjects did

not perform prior comprehensive planning while designing the solution. However,

they did identify the classes. The author concluded that the research provided an

accurate and reliable picture o f design among students. For future research, the author

recommended a study of detailed cognitive models used by students in OOP.

Student Learning of Programming and Problem-solving Skills

In general finding a solution to a problem, using computer programming or

general problem-solving strategies include similar cognitive actions and typical

problem-solving heuristics used by a programmer (Ahmed, 1992; Dann, 1990;

Kurland, Pea, Mawby, & Pea, 1986; Ross, 1997; Shnidermann, 1976). This section

reviews studies on the relationship between programming and problem solving and the

effects o f programming on problem-solving skills.

Willis (1999) investigated the effects of learning object-oriented

programming (OOP) on students’ problem-solving skills. Willis hypothesized that

OOP learning would improve students’ problem-solving skills.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

The sample for the study included, 87 students (46 females and 41 males) who

were enrolled in a course titled “Computer Science I” and were considered as the

treatment group. Forty-six (20 females and 16 males) were placed into a control group

enrolled in a course titled “Business Computer Applications” at a local high school.

The subjects’ ages ranged from 15 to 18 years, and their grade level ranged from 10 to

12. The treatment group received instruction in an OOP language (C++), and the

control group received instruction in Microsoft Office. For the study, a pretest-

posttest non-equivalent control group quasi-experimental design method was used. In

addition, the Watson-Glaser Critical Thinking Appraisal (CTA) was used to determine

the existence of problem-solving skills. The test reliability was determined with

coefficients for internal consistency ranging from .69 to .85.

Statistical analysis o f variance (ANOVA) revealed no significant relationship

between improved problem-solving skills in the two groups. The lack of improvement

in CPS skills in the OOP group led the author to conclude that educators should help

students become more “ independent thinkers and problem solvers and not merely

users o f technology.”

Choi (1991) studied whether programming in Pascal or FORTRAN improved

the problem-solving skills o f college students. The sample for the study consisted of

58 students enrolled in fall semester courses at Texas Tech University. Two

experimental groups included 18 students enrolled in Pascal and 19 enrolled in

FORTRAN. Students enrolled in the beginning keyboarding, course were selected as

control group (n = 21) and had no prior programming experience.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

23

To study the effects of Pascal and FORTRAN on student problem-solving

ability, the study employed the Ross Test o f Higher Cognitive Processes as the

measuring instrument. The statistical analysis of variance (ANOVA) revealed that a

significant correlation between increased problem-solving skills and programming in

Pascal or FORTRAN was found. The authors concluded that problem-solving skills

increased “through systematic exposure and interaction by programming in Pascal or

FORTRAN.” For further research, the authors suggested obtaining a more “accurate

picture using descriptive data on the effects of computer programming on problem­

solving.”

Mains (1997) investigated the effects o f computer programming language on

logical thinking skills. The sample for the study consisted of students from two

classes (Introduction to Programming QBasic and Graphics/ Desktop publishing) at a

community college in Las Vegas, Nevada. Students enrolled in the Introduction to

Programming in QBasic class served as the experimental group, and the students

enrolled in the graphics/desktop publishing class served as the control group. Twenty-

seven students took the pretest measuring logical reasoning skills. Statistical analysis

(ANCOVA) of the results revealed no significant difference between the pretest scores

for the computer programming and the graphic group. However, only 15 students

took the posttest measuring the logical reasoning skills. No further information on the

instrument and the type was provided. Statistical analysis (ANCOVA) of the results

revealed no significant difference between the two groups on posttest. The author

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

24

concluded that students with good mathematics background showed higher levels of

comfort with computer programming.

Knox-Quinn (1995) designed a study to investigate how student construction of

expert systems in LISP programming language would impact the problem-solving

skills. The sample for the study included seven business students. Six of the students

had previous computer knowledge, and two of them had prior computer programming

experience.

The research design consisted of five stages:

(1) Students read four articles about expert systems, and a week later, they

attended a lecture/demonstration about expert systems.

(2) Students were taught how to develop knowledge bases using examples.

(3) Students solved passive activity limitations (PAL) tax problems.

(4) Student reports and anecdotes were recorded while they were developing

knowledge bases.

(5) Problems were given to students, and their verbal protocols were recorded.

The results of the study showed that programming expert systems increased

problem solving and/or higher order thinking, such as being able to classify

information and being able to break down content knowledge to find the relationship

between pieces of information. The authors concluded that developing an expert

system improved students' problem-solving strategies and that effective computer

problem solving can be achieved by allowing students to spend time solving problems.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Discussion and Conclusion

25

This chapter has reviewed the relevant literature on three major areas. The

first area which focused attention on the curriculum and goals for the introductory

course in computer science, revealed an ongoing debate about what and how to teach

students in the introductory course. However, teaching of OOP and computer problem

solving is the evident choice among CS departments and is recommended by the major

professional computer societies (ACM & IEEE/CS, 1991, 2001).

The second area o f the literature review, which focused attention on student

learning of computer science at the college level, revealed information on selected

CPS and programming activities/strategies employed by novice students. Students

displayed “expanded mental representations when they gained more programming

experience” (Corritore & Wiedenbeck, 1999). Objects were salient in OOP

understanding. Object-oriented student designers identified objects and methods

(Pennigton, Lee & Rehder, 1995). Moreover, the studies (Allwood & Bjorhag, 1990;

Pennington, Lee & Rehder, 1995; Rist, 1995) suggested that different strategies were

used by novices to cope with problems. In addition, the studies found that students’

were able to write better programs after being exposed to programming for a longer

period of time. Program understanding played a vital role in finding the correct

solution and during the debugging process (Allwood & Bjorhag, 1990; Ebrahimi,

1994). One of the studies (Rist, 1995) revealed a mixed conclusion that OOP is

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

26

difficult to leam due to its complex nature, but that it is easy to leam due to its

modeling of the real world entities.

The third area o f research, which focused on the computer programming and

problem-solving, revealed “mixed results” about the effects o f programming on

problem-solving skills (Ahmed, 1992). In some studies, there seemed to be a positive

correlation between programming and increased problem-solving ability, for example,

studies found that writing expert systems in LISP and computer programming in

FORTRAN and Pascal resulted in improvement of problem-solving skills (Choi,

1991; Knox-Quinn, 1995). On the other hand, other studies found that problem­

solving skills did not improve after receiving instruction in QBASIC or OOP (Mains,

1997; Willis, 1999).

The studies reviewed in the literature reveal that there are issues that warrant

attention. First, in each study, only one or two aspects of the programming process

were examined. None of them chose to examine the programming process in its

entirety. Second, a wide range of CPS and OOP learning processes and strategies

were studied by the researchers. However, each study stopped short of examining

how the instruction students received influenced their learning processes. Thus,

current studies provide an incomplete picture of the CPS and OOP learning processes

in a programming class. Third, the question of what effect computer programming has

on problem-solving skills has produced mixed and often confusing results. Several

concerns have surfaced from the previous research and the methodology those studies

used. Some studies (Choi, 1991; Willis, 1999), for example, used only a paper and

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

27

pencil instrument for data collection purposes. Use of the paper-and-pencil instrument

may raise some concerns such as “whether the respondent is interpreting the items on

the test according to the researcher/developer’s framework.”

Fourth, some studies (Allwood & Bjorhag, 1990; Corritore & Wiedenbeck,

1999; Pennington, Lee & Rehder, 1995) suffered methodological shortcomings. Some

studies, for example, used questionnaires (only one data collection source). Since no

other data source was applied to support the collected data, it is doubtful if the

information collected actually reflected the intended responses by the subjects.

Furthermore, some of the researchers failed to establish the validity or reliability o f the

instruments used in their research (Corritorre & Weidenbeck, 1999; Willis, 1999).

Finally, some studies (Allwood & Bjohrag, 1990; Corritoree &Wiedenbeck, 1999;

Ebrahimi, 1994; Lee, Pennington & Rehder, 1995; Willis, 1999) failed to provide

background information/selection criteria about the sample. Hence, these

shortcomings make it difficult to generalize the results to subjects other than those

sampled.

In addition to the various problems associated with the studies mentioned in

the literature review, most of the studies were conducted on the imperative paradigm

rather than studying the OOP learning process. Because computer science curricula,

has already switched from imperative paradigm to OOP (ACM, 2001; CSAB, 2003;

McCauley & Manaris, 2000), new studies are needed. Currently, the learning

processes used by the students in an introductory OOP class are relatively unknown.

Moreover, in responding to the weaknesses and shortcomings, which surfaced during

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

28

the literature review, additional research is needed to determine computer problem

solving strategies used by students while engaged in programming with an

introduction to OOP.

Recommendations

Despite the shortcomings and weaknesses, the studies reviewed did provide

directions for study and indicated a need for further research in investigating the

strategies used by students in an OOP environment. First, among the studies

reviewed, none accounted for instruction and its connection to OOP learning. Second,

none of the studies examined the OOP learning process in its entirety. Third, a

number of studies on the relationship between programming and CPS have moved to

examine the effects of computer programming on problem solving without collecting

fundamental knowledge (Ahmed, 1992) about CPS and programming strategies.

To avoid the problems of the research reviewed, some methodological

recommendations are made. First, a study is needed that accommodates the Reed and

Palumbo (1992) recommendation of gathering the basic student information on the

development o f problem-solving and programming skills (Ahmed, 1992). Rather than

investigating the relationship between computer programming and problem solving, a

study is needed which investigates students’ thinking strategies and the characteristics

o f the instructors’ instruction in CPS and OOP. Such a study will provide a more

comprehensive view on students’ OOP learning. Furthermore, information about the

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

29

transfer effects of programming cannot necessarily be revealed by only a pencil-and-

paper test. Instead, the investigation on students’ OOP learning needs to employ

qualitative methods of research and use multiple sources of data collection including

classroom observations, student and instructor semi-structured, open-ended

interviews, and a comprehensive review of the classroom documents. This approach

will help avoid the methodological shortcoming in the literature reviewed.

Second, in studies (Choi, 1991; Corritore & Weidenbeck, 1999; Lee,

Pennington & Rehder, 1995) students were asked to provide information using closed-

ended interviews and/or questionnaires. There is a need to conduct research on

students’ OOP learning strategies by using a more open-ended methodology that is

sensitive to students’ and instructors’ personal understanding of the content; such an

approach may produce significantly different results (Lederman & Chang, 1997).

Therefore, it is recommended that open-ended interviews be conducted to gather the

information on OOP teaching and learning.

Finally, none of the studies (Allwood & Bjorhag, 1990; Corrotorie &

Weidenbeck, 1999; Ebrahimi, 1994; Rist, 1995) investigated the connection of the

teacher’s instruction on student learning. The student learning of programming has

been the focus of much research attention. But without a comprehensive look at the

instruction with student learning, an incomplete picture o f the student learning of CPS

and OOP exists.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

30

CHAPTER III

DESIGN AND METHOD

Purpose

The purpose o f this study was to explore students’ computer problem solving

and computer programming learning experiences to understand the dynamics of

students’ approaches in learning to solve problems in a beginning computer science

(CS) course with an introduction to object-oriented programming (OOP). The

following questions directed the study:

(1) What instructional strategies characterized a beginning computer science

course with an introduction to object-oriented programming at the college level to

engage students in computer problem solving?

(2) How did novice students solve computer problems as a result o f instruction

in a beginning computer science course with an introduction to object-oriented

programming at the college level?

Setting

Student participants were diverse in terms of gender, age, ethnicity, math

placement scores, and academic majors. Two female and two male students with ages

ranging from 19-30, represented a racial mix consisting o f two European Americans

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

31

(1 male and 1 female), one Native American (female) and one Mexican American

(male).

All 24 classroom sessions o f the introductory computer science (CS 101)

course were observed for the duration of five weeks during the summer 2001

academic term. The course was taught five days a week, Monday through Friday from

11:20 a.m. - 12:50 p.m. A total of 10 students were registered for the course. The

class was diverse in terms of gender, age, ethnicity, and academic majors. The class

contained five female and five male students, with ages ranging from 18 -30 . The

racial mix of the class consisted o f five European Americans (two males and three

females), one Native American (female), one Mexican American (male), one

Vietnamese American (male), one Chinese American (male) and one international

student (female).

The classroom setting included a state-of-the-art classroom and equipment.

Each student had access to a computer on his or her individual desk during the

classroom sessions. Each computer was equipped with Intel® Pentium® 4 processor

and Microsoft ® Visual C++ Compiler 6.0, and was connected to the Microsoft ®

Visual Studio development environment providing maximum optimization for the

Intel processor architecture and access to laser printers. Students used a VISUAL C++

programming environment to generate Win32 console applications. The instructor

used the electronic white board and overhead projector. The instructor had Internet

access to refer to his web site specifically designed for the course.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

32

The selected course (CS 101) was designed as an overview for computer

science majors at the undergraduate level. CS 101 was described in the instructor’s

course syllabus as follows:

This course is designed to introduce you to the fundamental principles of
computer programming. While most of us are familiar with the use of
computer applications to assist in well-defined tasks such as writing a report
or playing a game, you will often come across unique problems for which no
application is available. Learning to program a computer allows you to create
new applications to solve such unique problems by giving the computer new
instructions in a general-purpose language. We will use the programming
language C++ to introduce object design and object-oriented problem solving
techniques. Object -oriented programming allows us to develop programs in a
natural way, by organizing information and instructions as objects that
correspond to the way in which we think about problem solving. Prerequisite:
Students must have completed the basic math skills requirement.

The CS department offered CS 101 for CS majors and minors at the

undergraduate level. CS 101 served as the preparatory course for advanced CS

courses by providing the foundation in CS coursework. The computer facilities for

students majoring in the CS Department included 24-hour access to departmental

computer labs, with Pentium III & IV running Windows 2000 and Sun Ultra Sparc

stations.

Method

This study was exploratory in nature, specifically designed to identify new

directions for teaching computer science, computer programming and computer

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

33

problem solving. In addition, it aimed to search for potential factors affecting

students’ success in computer problem solving, in computer programming, and

developing novice students’ ability to solve computer problems. A variety of

qualitative research techniques were employed to collect and analyze the data.

This study focused on a college level introductory computer science class that

incorporated OOP. The curriculum of the class was focused on teaching students

introductory CS concepts and introductory OOP. After receiving permission from the

instructor, four students were selected who were willing to participate in the study.

Observations of each class session were made to thoroughly describe the curriculum

and instruction. Student interviews were conducted to gather information on how

students implemented instruction in their responses. Two formal interviews gathered

students’ computer problem solving (CPS) and computer programming approaches.

Two practice sessions (an hour each) were conducted during the second and

fourth weeks. The purpose o f these sessions was to allow students to orient

themselves with the protocols that were used during the formal interviews, to practice

verbalizing their thinking process while engaged in CPS, and to practice similar

problems provided during the formal interviews. Two different computer problems

were designed by the participating instructor for each practice session. However, the

practice session problems were designed to demand less student time to solve as

compared to the formal interview problems. Two problems were selected for each

session based on the students’ programming skills at a particular point in the course

and were representative o f problems typically found in introductory CS textbooks.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

34

The course instructor designed and prepared the problems by embedding common

student errors into a program. The instructor also designed two problems without a

solution.

Subjects

This study proposed the identification of a beginning CS course with an

introduction to OOP at the college level to teach CPS and computer programming

where the instructor and four students volunteered to participate in the study. The

instructor was willing to be observed in all classes and reflect on the teaching of the

OOP concepts and CPS through multiple interviews. The four students selected for

participation in the study had no previous experience in programming and were

selected to assure diversity in the following categories: (1) mathematics skill levels

(high, medium, low) since previous studies have linked mathematics skill levels to

programming abilities (Campbell & McCabe, 1984; Dey & Mand, 1986); (2)

enrollment in the course for the purpose of fulfilling (a) CS major and/or minor

requirements, (b) an elective for their major, or (c) a general elective. All students

were willing to participate in the practice sessions as well as fulfill research

expectations. They allowed complete access to their graded assignments, quizzes and

exams, agreed to informal twice a week interviews, and participated in two computer

problem solving and programming interviews.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

35

During the first day of the class, all students in the class were asked to

complete a questionnaire (Appendix C) which asked for background information.

Permission from the student volunteers and the volunteer instructor was also obtained

before the research began (Appendices A and B). Mathematics skills test information

was gathered for the volunteers, and the selection o f the students was completed by the

end of the first day of the term.

Data Sources

To investigate the instructional strategies emphasized by the instructor and the

strategies used by students to solve computer-programming problems in a beginning

CS course, five sources of data collection were used. These data collection sources

helped to collect data about the class, the instructor, and the students. A description of

each type of data collection source is provided below.

Classroom Observations

Classroom observations were conducted in each class session for a complete

academic term. The purpose of the observations was to document the curriculum that

was taught, observe the instructional strategies (activities, settings and classroom

engagements), gather data on the instructor and student interactions (instructor-student

and student-student interactions), and document student behavior during instruction.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

36

The observations included the instructor’s presentation o f the material and the

collection and incorporation of the relevant classroom material, such as exams,

handouts, and worksheets. The purpose for these observations was to provide a

detailed description of how a beginning CS course with an introduction to OOP was

taught and to identify salient characteristics that supported student learning in the

class. The observations were used in answering the first research question.

All classroom observations were audio-taped, and field notes were taken. A

special microphone was attached to the instructor to record instructor-student

interactions. The purpose of the field notes was to minimize the researcher’s

classroom influence. Field notes and audio-taped transcripts were transcribed and

organized at the end of every class session. In order to minimize the researcher's bias,

the researcher separated description of activities in the class from personal reactions to

events, questions, and interpretations by logging personal reactions in a journal.

In addition to classroom observations, outside classroom interactions

(instructor-student) were documented. These interactions were gathered by

documenting students’ visits to the instructor during his office hours. The instructor

reported the contents of the office hour visits. Informal discussions and/or interviews

were conducted with the instructor at the end of each day to clarify questions that

surfaced from the classroom observation, and to review any questions students asked

during his office hours.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

37

Instructor Interviews

A series o f audio-taped interviews were conducted with the instructor

(Appendix D). The instructor was reminded that the data collected during the

interviews were confidential and would not be used in any way for evaluation.

An initial semi-structured, open-ended interview was conducted prior to

observing the classroom instruction. The initial interview was designed to establish an

overview of (1) the course’s curriculum, (2) the instructor’s approach to teaching the

class, (3) the OOP concepts and CPS strategies the instructor planned to stress, and (4)

the instructor’s method and purpose for teaching the OOP concepts.

Direct observations of all classes were used as a springboard for the interviews

(except for the initial interview) with the instructor. Arrangements were made with

the instructor prior to each observation. At the end of each day, the researcher

informally interviewed the instructor to (1) clarify the observations, (2) gain the

instructor’s perspective on the progress o f the students, (3) identify the students’

progress on the assignments, and (4) gather the instructor’s plan for the following day

of instruction.

A final semi-structured, open-ended interview was conducted close to the end

of the academic term. The purpose of the final interview was to identify the

instructor’s perception of the progress of the students with CPS and OOP

programming concepts. The final interview allowed the instructor time to talk about

the programming concepts and CPS strategies he stressed and the reflection on

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

38

students’ abilities to use those concepts in their programming activities. Data from the

interviews were transcribed immediately after each interview. When discrepancies

between interview data, classroom observations, and other data occurred, informal

interviews with the instructor were arranged for clarification.

Classroom Documents

All classroom documents pertaining to the teaching the introductory CS class

were collected and examined. Classroom documents included syllabi, initial course

information sheets, lesson plans, lecture notes. Power Point presentations, textbook

activities, laboratory sheets, assignment sheets, homework assignments, hands-on

activities, tests, and programming projects. The classroom documents were then

analyzed in terms of the information on (1) CPS and the programming concepts

taught, the classroom activities and processes the instructor utilized, and the areas to

pursue through observations and interviews. The assignments (written and

programming homework) and tests (quizzes or exams) were included with other

important data to develop a response to the first research question.

Student Interviews

A variety of activities were used to monitor the progress of the four students

taking part in the study. The researcher conducted two informal interviews per week

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

39

(Appendix E) with the students to gauge their understanding of the CPS and OOP

concepts they were learning. During the first interview, the researcher reminded

students that the information would not affect their grade and would be kept

confidential.

During the informal interviews students were asked to explain their

understanding of the programming concepts that had been the focus of instruction that

particular week. These informal interviews (twice a week) also incorporated questions

about the students’ perceptions and learning of CPS and OOP, their study practices,

and how well they were able to determine efficient and correct computer problem

solutions.

Twice during the term (at the middle and close to the end of the term) the

researcher conducted problem-solving interviews (Appendix E) of the four students.

The purpose o f these student interviews was to allow students an opportunity to

demonstrate the following: (1) their abilities with CPS strategies and the OOP

concepts learned as a result of their instruction; (2) their perception of what the

program was doing at different stages; and (3) any confusion they had about their

programs or the concepts they were taught to use for particular programs.

In the interviews, students offered oral and/or written responses to problems

and then explained the CPS and computer programming strategies they employed. All

written materials were collected at the conclusion of the interview. Interviews were

audio-taped and transcribed to capture all the information in an accurate manner. The

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

40

written materials provided additional documentation of the audio-taped transcription

and were used to clarify the students’ work on the problems.

Ultimately, the focus of all the problem-solving interviews was to capture the

entire program development process by observing how students approached problems

and worked out solutions. Student interviews provided extensive performance

examples and detailed accounts of student learning of OOP concepts and CPS

strategies throughout the course. The student interviews were in-depth and conducted

in a relaxed environment.

Two different computer programming problems were designed by the

participating instructor for each of the formal interview sessions. The two problems

for each session were problems typically found in introductory CS textbooks and were

based upon the level o f programming skills the students could be expected to

demonstrate at that point in the course. For each session, one of the problems was

designed without a solution and asked students to develop a complete solution. The

other problem presented a program in which the instructor had embedded common

student errors for the participants to identify and correct.

In order to establish the content and face validity of the problems given by the

instructor, the problems were reviewed by five computer science instructors with

recent teaching experience in an introductory course in OOP at the college level.

These instructors were asked to critically review the problems and solutions with

regard to problem appropriateness based on the course objectives and the material the

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

41

students had covered in class. Review and modifications continued until 80%

agreement was reached among the instructors.

During the formal interview, students were given two problems. Problem 1

offered a proposed solution but contained errors. Problem 2 required students to

develop a complete programmed solution. For Problem 1, students were told that

errors were embedded in the computer program and were asked to review the provided

solution and provide the expected output. Furthermore, students were asked to

identify why the output was erroneous. For Problem 2, students were asked to

develop an entire computer solution to the given problem. The time period for the

completion of the two tasks was a maximum of two hours. The students were told that

the most valuable part of the interview was explaining their thoughts and their solution

rather than just obtaining correct answers. Students were allowed to work on the

computer problems using pencil-paper and/or a computer.

During the formal interview, students were asked to (1) describe their

corrected solution to Problem 1, and (2) describe their solution for Problem 2.

Additionally, students were asked to identify, describe, and interpret, particular

strategies they used debugging the solution to Problem 1 or in creating and debugging

the solution to Problem 2.

The role o f the researcher as an interviewer during the problem-solving

interviews was to: (1) prompt silent students, (2) clarify the students’ ideas, and (3)

probe more deeply when students made interesting comments or responses to the

problems. The researcher prompted students with questions as needed to obtain as

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

42

much as information about the CPS and programming strategies they used. The

researcher also reiterated that the interview was not a test as a way to reassure students

who were anxious about spending too much time on a problem or generating incorrect

answers.

The protocol for the two problem-solving interviews followed a set of actions

and questions:

(1) The audio recorder was tested, tumed-on and time was noted.

(2) Each student was asked to state his/her name, and the recorders were

checked again for audio transmission.

(3) Each student was provided with a computer, a desk, a pencil, a calculator,

blank pieces of paper, a word-processed hard copy of the two problems, and a soft

copy of the solution code for the problem with the embedded errors. Both problems

were used to investigate the CPS and programming strategies that students used to

develop (1) an accurate solution to a proposed solution, where errors were embedded

and (2) an original solution to a given problem.

The directions for Problem 1 (solution with embedded errors) asked the students

to:

1. Explain their understanding of the expectations in the problem.

2. Correct the embedded errors.

3. Generate the correct output.

The directions for Problem 2 (developing an original solution code) asked the students

to:

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

43

1. Explain their understanding of the expectations in the problem.

2. Develop the solution.

3. Correct errors (if any) in their solution.

4. Generate the correct output.

(4) Students were asked to verbalize their thoughts.

(5) The researcher noted student behavior and actions as the student worked on

the problems. These notes were compiled with the transcriptions of the audio-tapes.

(6) The researcher kept track o f the total time taken by the student to solve each

o f the problems during the interview session.

(7) The researcher asked students to refrain from discussing any of the problems

with others in the class; this request was made to prevent contamination of the

subsequent interviews.

When a student completed the interview, all materials including the audio­

tapes, handwritten notes by the student or researcher, scrap papers, the computer disk

copy of the solutions, and the hard copy of the source and object code were placed in a

secure envelope. Copies were also made of the material collected.

Researcher’s Journal

The researcher maintained a daily journal on classroom observations and

interviews with the instructor and students. In it, the researcher recorded reflections

on the classroom observation and research activities. It also included thoughts,

questions, reactions, interpretations, and insights during the observations. The

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

44

researcher’s journals helped to identify potential sources of biases and

misinterpretations by the researcher. By doing so, the researcher attempted to

minimize threats to the reliability of the data analysis since the major source of data

collection and analysis was the researcher. The journal also served a guide in

interviews and assisted the researcher in clarifying observations.

Data Analysis

Qualitative data analysis techniques were used to analyze the collected data

used in this study. Data were stored in a file coded under a pseudo-name for the

instructor and students, date, and type (observation, interview, etc) in the researcher’s

office along with a backup copy. The data analysis process for the research involved

ongoing data review of instructor and student interviews, classroom observations,

classroom documents, as well as the researcher’s journals and field notes. The process

involved preparation of a descriptive analysis and a summary of basic trends or

relationships evident in the data. The data analysis and report of conclusions were

structured around the research questions.

A narrative description of the experiences o f the instructor and the students

was developed during the data analysis. This narrative provided an in-depth

description or a picture of an introductory CS class at the college level that included

CPS and OOP concepts and strategies. The narrative included the transcriptions of the

selected parts of the lessons with verbatim quotes from observations and interviews.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

45

Analysis for the data collected from the instructor’s classroom observations,

interviews, classroom documents, and the researcher’s journals was initiated with

transcription o f all the audio-tapes and the field notes. Data were searched, organized,

examined, and classified to find ideas, similarities, constructs, themes, regularities,

and patterns o f similarities and differences; all o f the data sources throughout the

academic term were used. Any key words or phrases, representing any patterns and

recurring regularities, were used to code categories and to search for patterns and

comparisons in the data. The end product of the data analysis of the instructor’s

interviews, classroom observation, and classroom documents were summarized in a

narrative summary. The narrative described the instructor’s characteristics,

actions/reflections of his/her teaching, a narrative description of lessons, and a list of

the CPS strategies and OOP concepts emphasized.

Data analysis o f student interviews began with a transcription o f all students’

audio-recorded interviews, researcher’s journal and field notes. In order to develop a

detailed and thorough description o f each individual students’ knowledge, skills, and

understanding of solving computer problems, their interviews were reviewed and

synthesized several times. A profile o f each student contained background

information, such as demographics and information of how each student solved the

given computer programming problems; these data were related to the instruction the

student received in the introductory CS class. This analysis was designed to identify:

(I) patterns of similarities and differences among the students’ CPS strategies and

programming performances, (2) any words or phrases representative o f these

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

46

similarities, patterns and regularities, (3) any categories or sub-categories, if needed, to

describe their problem-solving solutions, programming, and computer problem

solving strategies.

Researcher

The researcher was the primary investigator and data collector for this study.

Obviously the researcher had personal biases, experiences, viewpoints, training, and

influences that would impact the interpretations, therefore threatening the credibility

of this study. In order to minimize or eliminate personal biases, the researcher’s roles

were documented. The researcher kept a journal of personal questions, reactions,

decisions, preconceptions, values, experiences etc. This journal was intended to help

distinguish personal biases and therefore allowed a less biased understanding of the

teaching and learning in the class.

The researcher received his Bachelor’s degree in CS. The researcher also

completed two Master o f Science degrees, one in CS and the second in Science

Education. The researcher had been involved in teaching introductory and advanced

undergraduate classes in CS for 12 years. His teaching and industry experience

included a variety o f programming languages. The researcher had previously

established a CS department/lab, developed and implemented a complete curriculum

for an Associate o f Science degree program in CS and Computer Information Systems.

The researcher had also mentored new instructors, performed supervisory

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

47

observations, evaluations, as well as peer observations for a variety of CS classes

including introductory CS classes/labs, which included instruction in OOP. Currently,

the researcher teaches a wide range of computer science classes at a community

college. The researcher also advises a computer club for students.

As an undergraduate student and a CS educator, the researcher realized the high

dropout rates in introductory programming classes. After reviewing the literature on

the subject of teaching and learning introductory courses in undergraduate CS, the

researcher recognized that most students lack the necessary skills to solve computer

problems and are unable to transfer their programming and CPS skills to other areas.

After attending several computer professional conferences, workshops and completing

an extensive review of the literature on CPS and OOP, the researcher questioned

students’ understanding of fundamental CPS and programming concepts. From the

researcher’s perspective, the research questions presented in this study are of vital

importance for CS programs.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

48

CHAPTER IV

ANALYSIS OF DATA

Introduction

This chapter provides the results of the data analysis in three sections. The

first section provides Tim’s profile (the instructor for the class), including an in-depth

description of his academic and professional background, his teaching characteristics

and actions and his reflections about the course. It also includes his instructional

strategies and the object-oriented programming (OOP) concepts and computer

problem solving (CPS) strategies he emphasized. The second section includes student

profiles describing how each student involved in this study approached solution to the

given problem along with their demographic information, class attendance, and class

work information. The third section provides a synthesis of the results directed at

answering the research questions posed for this study.

Instructor Tim

The Computer Science (CS) Department Chair of the university recommended

that Tim join the study. When Tim was contacted, he showed enthusiasm to

participate. Tim was a cordial, friendly, and helpful individual. He had a strong

educational background in the area o f computer science with a Ph.D. and Master’s

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

49

degree in computer science with a specialization in databases. Tim’s Bachelor’s

degree was in Electrical Engineering with a specialization in control theory.

Tim valued conducting research. Tim’s impressive research work in the area

of databases was published in a variety of CS and Engineering professional journals.

He recently completed research in the areas o f multi-database-state services and in the

design of a visual object-oriented programming language.

During the past 10 years, Tim has taught a variety CS courses such as

introduction to programming, computer organization, programming languages,

databases, and networking. Tim stated that he enjoyed the teaching profession

because it allowed him flexibility in managing his time, saying that “Teaching allows

me to enjoy my life during summer and do research.” Tim particularly enjoyed

interacting with his students. He believed that classroom interactions and assignment

grading helped him to understand how students’ mental models worked, and how they

thought about the object-oriented concepts.

Tim’s Plans for Instruction and Assessment

Tim was a dedicated teacher who was concerned with and cared about

student learning and improvement. Tim stated, “I help them to leam and make them

better in what they do.” Tim characterized his teaching of the introductory computer

science course as “student-centered.” In describing his teaching philosophy, Tim

explained that “ I believe in presenting opportunities for students to leam rather than

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

50

telling them how to leam; I prefer self-discovery of knowledge and the light bulb

theory.” Tim believed his approach to teaching allowed students to have fun. He told

his students “Do not really worry about what it all means; let’s just solve the problem

and play with the computer and make it playable rather than a chore.” Tim said that

he used feedback from his students in the introductory CS courses to help him decide

“what works well and what does not.” With regards to his teaching style, Tim

explained that he wanted to provide his students with the opportunity to be “on their

own” so he could build their confidence. Tim offered one critique at his own teaching,

stating that “One thing which may or may not be a good thing of my style as a teacher

is to have a tendency to not really jump on people who are lagging sometimes, when I

probably ought to, and this may lead me to ignore some of the quieter students.”

Prior to the beginning of the term, Tim perceived that students were generally

“unprepared” and lacked, well developed “mental models” to create object-oriented

computer programs. Tim’s also noted that students were unprepared to manage low

levels o f details o f the program implementation and that they lacked sophistication in

developing their own computer programs.

Tim had strong opinions about the title of the course “Introduction to

Computer Science” and called it “misleading in its implications.” According to Tim,

the name of the course was “wrong,” because the course was not an introduction to

computer science but rather an introduction to computer programming. Tim also had

reservations with regards to the textbook assigned for the class. He described it as

“confusing for students” and as offering “very little new facts.”

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

51

Tim also disagreed with the use of C++ language in the introductory CS

course. He called C++ an '‘awful language,” explaining that, “there are too many

complexities in C++ that cause frustration without giving any more of an inside

inspiration among students.” Furthermore, Tim described the VISUAL C++ compiler

as “notoriously bad” with obscure error messages.

In the initial interview, Tim explained his planning and implementation of the

instructional strategies as “textbook bound,” stating that “Mainly I develop my

teaching around the book and will have 50% time for lecture only.” Tim also planned

to make the course more “like a lab” where the majority o f teaching involved

interactive lab exercises, and students were able to explore how the programs actually

worked. Tim planned to teach the introductory course by using examples and placing

less emphasis on syntax and more on CPS. According to Tim, “ I plan to augment my

lectures with examples and not to emphasize too much on the syntax. I also have

decided to develop 50% o f the homework assignments based on examples I will be

discussing in the course and 50% where students have to develop an entire solution

from scratch.” However, Tim confided that his personal approach to teaching with

regards to OOP concepts was still “open” and in the “experimental stages.”

Tim was still unsure o f how he would approach teaching the introductory

computer science class. “Should I introduce the object-oriented concepts right from

the first day or should I wait and introduce these concepts at a later stage in the

course?” Tim thought that OOP concepts should be taught in a non-confrontational

way. “According to my past experience, students seem to be pretty good about the

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

52

object-oriented concepts such as the concept of class as long as they are not

confronted directly with it.”

Tim planned to emphasize the following OOP concepts in his introductory

CS course: object, methods, class, constructor, destructor, encapsulation, inheritance.

polymorphism and information hiding. He thought that the most difficult OOP

concepts to teach would be abstraction and encapsulation and the easiest would be the

concept of methods.

When asked how the concepts he planned to emphasize would be helpful to

beginning students, Tim replied:

The concept o f abstraction will assist students in organizing material. It will
help them to manage problem complexity and will help students to place
mental walls and put shells around to hide details and to move thinking to
other problems and situations.

Tim elaborated on his teaching goals and objectives for the introductory CS

course. He wanted students to master fundamental object-oriented problem-solving

techniques by using the object-oriented design and to solve problems using the object-

oriented programming. Tim also wanted students to leam other programming

concepts such as selection, repetition, and functions.

With regards to assessment goals and objectives, Tim’s goal was to make

sure that students were able to develop basic OOP and CPS skills. He explained that

the purpose o f quizzes and exams was to help assess students' understanding of the

conceptual problems and CPS. However, Tim felt that “weighing too much on

computer problem solving is not fair because you are asking students to do creative

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

53

work in a stressful situation.” The programming assignments were designed to assess

students’ ability to create, execute, and test simple programs.

As part of the initial interview, Tim was asked to explain his understanding

of the CPS process. Tim viewed CPS as a discovery process.

I see problem-solving as a discover and refine process. Layout your basic
thoughts, your objects, methods, and classes and see how they fit together and
keep refining it. It is like a black box approach i.e. to see what information
you give and what information you get back. One should keep distance from
the computer language or the details o f the syntax.

Tim planned to help students develop CPS skills by asking them to work out

computer problems in written English first rather than C++ code. However, Tim was

not in favor of any particular problem-solving strategy and/or tool.

When asked about his understanding of some fundamental OOP concepts that

he planned to teach, he responded:

Encapsulation is basically just structuring of everything into a central entity.
It is like putting all the pieces together in the same box, and so it’s all there
together. Information hiding, that is once you get the stuff in the box you
only let people see what you want them to see in the box, and rather than
putting it all for them to see. It is like you have a cardboard box then you
make a hole and you see what you need to see. Class is simply a data type.
It’s basically the group of things that potentially can be an instance of a class.
It is the mechanism by which you define the potential instances. In a more
abstract way, it is a set of all potential values. OOP is any programming in
which your first principle is a definition of an object by defining the classes.
This definition has nothing to do with languages. It is a way of thinking and
developing structure.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

54

Tim’s Instruction and Assessment

Based on classroom observations/documents, field notes, and interviews,

Tim’s instructional and assessment strategies were identified. The course and weekly

lesson contents (Appendix F) typically included teacher-directed, text-bound lectures

using Power Point presentations. The presentations were followed by demonstration

of examples on the computer and a time specified to answer student questions.

Students were assigned homework assignments from the textbook that involved both

written exercises and programming projects. Course assessment included quizzes,

written (midterm and final) exams, and homework. At the conclusion of the course,

students were expected to design, code, and test programs.

During the first part of the first week (Appendix F), Tim focused on discussing

primary (computer programs, input/output, objects) and general (object types, object

attributes, object actions/operations) concepts using a Power Point presentation. He

discussed the C++ programming environment (source code, compiling, pre-processing

and linking using VISUAL C++ compiler).

During the second half o f the first week, Tim highlighted the imperative

aspects of the C++ programming language with a continuing introduction to objects

(such as cin, cout). Tim lectured on topics such as C++ constructs and basic C++

types and programs. He also introduced expressions and control flow concepts using

C++ code examples with an emphasis on details o f C++ syntax. At the end of each

lecture, Tim allowed brief lab sessions where students worked at their computers

individually with the sample program code he provided. Typically, students copied

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

55

the sample program code into the computer and then compiled the programs.

Instructor-student interactions observed during the lab sessions focused on questions

regarding the working of the VISUAL C++ compiler and its error messages. During

the first week, the written homework assignments focused on memorization,

familiarization, and understanding of basic object-oriented programming concepts and

C++ language constructs. The programming assignments focused on entering

provided sample code and practice with the VISUAL C++ compiler commands. Few

students visited Tim’s office during the first week. The students who did mostly ask

questions about VISUAL C++ program compilation and sought clarification on

compiler error messages. At the end of the first week, Tim gave the students the first

quiz. The quiz focused on testing students’ knowledge of programming concepts, its

applications, and C++ syntax. Tim was satisfied with the quiz results.

The second week of instruction focused on the object-oriented aspects o f C++

language. During the first part of the second week (Appendix F), Tim described the

process o f creating an object-oriented program by stating, “To create a program, we

must define object types, create specific objects (instances) of those types, give

instructions for manipulating the objects that we have created, and finally C++ class

declarations.”

Tim further explained how to think about classes by describing the concept of

encapsulation. At this point, a typical interaction between Tim and a student occurred

about the concept of classes.

Student: Why do we need classes?

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

56

Tim: A general purpose language like C++ is designed for the most generic
applications. Primitive types hold the most common kinds o f values for
particular applications. As a result, we want more meaningful types of
objects-. For example, bank accounts, student's records in the registrar's office,
airline tickets etc. and that’s where classes become practical in OOP.

Later Tim indicated that encapsulation was useful to put all similar or related

information in the same object. Tim described information hiding as another way to

think about classes. According to Tim, “Information hiding is where a programmer

doesn’t want to worry about how an object works. He just wants to be able to use it.

And finally we think of classes in terms of object types.”

Tim supplemented his comments by showing Power Point slides on

information hiding. Meanwhile a student asked him a question:

Student: What role as programmers do we have here?
Tim: When programming with classes and objects, you need to shift between
two roles: class designer, the mechanic who understands how the internal
details of the objects work and object user, the driver who just wants to use
the objects to get some task accomplished. Whereas, abstraction helps to
keep these roles separate. This allows us to concentrate on just what is
important at a particular time.

Tim: For example, bank account. What information needs to be stored in a
Bank Account object?

Tim: (showing a slide on information hiding) The account number, the
owner’s name, balance o f the account, list of transactions, restrictions and
penalties, the owner’s phone number and address, the bank's name and phone
number etc. name o f the attributes in this case are:

AcctN umber: the account number
Owners Name: the owner’s name
Balance: the balance of the account
Determine the type of each attribute

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

57

AcctNumber: string
Owners Name: string
Balance: double

After discussing the concept of information hiding, Tim explained the

concept of operations, by writing the following on the board: “Operations are

functions that have access to an object's attributes. An operation may have the side

effect o f changing the value of some attributes." Then he showed the slide to describe

the concept of operations followed by the syntactical details on how to create classes.

During the second half of the second week (Appendix F), Tim’s emphasis

was on teaching CPS within the context of OOP. Tim started the lesson by writing the

following problem on the board: “Create a program to compute bills and coins needed

to give exact amount of change.” Then Tim asked students questions. Tim’s strategy

was to engage students in the CPS process through dialogue. A sample of these

interactions is:

Tim: What is the input for this program?

Student: Amount o f purchase.

Tim: What will be the output for this program?

Student: Change.

Tim: What objects do we need here?

Student: Amount.

Tim: Let’s identify methods. What methods do we need?

Student: Public and Private.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

58

Tim: [writing the following on the board] The object-oriented problem­
solving process is as follows:

Analyze and understand the problem
List all input values
List all output values
Define objects
Define methods
Define classes
Do computation
Write code
Test code

During the second week’s lab sessions, Tim provided instructions on how to

work through example code and on how to perform a desk-check to detect and correct

syntax and logic errors. Tim also taught VISUAL C++ compiler instructions, dealing

with error messages and writing and testing C++ programs. Students worked

individually on their programming assignments while Tim circulated and helped

students.

Students frequently visited Tim’s office during the second week. Their

questions focused on the example code, library functions (provided by Tim), and their

use. Students were confused about library files (provided by Tim) and how these

libraries converted information into a graphic representation. Students also sought

help in understanding the programming assignment ACCUMULATOR-CLASS

problem (Appendix H) and had difficulties in understanding concepts such as

constructor, declaring classes and using class objects.

Tim felt that he was successful this second week in helping students

understand the OOP concepts. However, Tim mentioned that “students understood the

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

59

concepts, but I did not get enough feedback on that yet. I think that the students’

understanding about OOP concepts is mature.” Overall, Tim described on his

instructional strategies during the second week as less textbook bound and more

analytical in nature. He stated, “During the second week there was far too much

information. This week was to get not only that here are the facts, but what you do

with the facts.”

Tim talked about his rationale for the second week’s homework assignments.

According to Tim, the written exercises were meant to ascertain that students had read

the assigned chapters, while the programming exercises he assigned tested the concept

of code reusability in solving problems with an emphasis on graphics, math and string

classes. The assigned work involved students in understanding the mechanics of how

the new class or the operation works. In evaluating the homework for the unit, Tim

thought that students faced difficulties dealing with C++ syntax. Tim described the

quiz given during the second week as a way to teach and assess students on the syntax

and semantics of the C++ language and to evaluate students’ understanding of the

basic C++ concepts and their applications.

The third week (Appendix F) o f instruction was dedicated to imperative

aspects with a touch of objects (cin and cout) of the C++ language. Tim focused on

basic C++ control structures (selection and repetition) and the concept o f functions.

According to Tim, “control structures will allow us to write programs that are better

organized and understandable. We'll leam the logic required to make decisions and

the instructions that allow us to tell a computer to select from a number o f options and

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

60

to perform repeated tasks.” Tim lectured throughout the week using Power Point

presentations on control structures. Lectures during this week were text bound and

focused on the syntactical details of the C++. Tim provided example codes on control

structures and functions with complete C++ program code. He advised students to

follow the example code while working on their programming assignments. Tim also

provided instructions (during lectures) on how to use the VISUAL C+f debugger and

how to insert print statements at various locations in the program code by using the

pause feature to examine the values of the variables.

During the third week, lab sessions did not follow the lecture. Students were

advised to work on their homework and programming assignments on their own time.

Written homework assignments focused on C++ syntax by evaluating simple and

complex relational expressions, if-else statements and repetition (while, fo r and do-

while) statements. The programming assignments included problems in which

students had to modify the solution (provided by Tim). In his directions, Tim

specifically advised students to modify the provided solution code rather than start

with their own solution. During the third week’s office hours, Tim answered some

student questions and felt that students had difficulty understanding the concepts of

control structures and transcribing the problem into C++ code. Tim felt that some

students were not fully exploring the problem before they were attempting to complete

the problem’s solution.

One of the major events o f the third week of instruction was the midterm

exam. Tim viewed the midterm exam as a tool to identify whether students were

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

61

“becoming programmers or not.” Tim explained that his intent for the exam questions

was to ascertain students’ progress by getting a “snapshot” of their understanding of

the course topics covered. He asserted that the primary focus of the midterm exam

questions was to evaluate “students’ thinking about programming concepts and their

applications.” Tim did not emphasize CPS, on the midterm exam. Instead, the

midterm examination asked students to solve a multi-level set of questions. According

to Tim,

The midterm exam had three levels of questions. The first was about basic
vocabulary and definitions; second, specific concepts, higher level than first
level, i.e. more like mechanical. What was the output of a program? The
second level was more detailed to get more specific concepts, for instance
reference parameters, which pass back the information out of the function. I
always tested this [functions concept] because without it you cannot solve the
problem. Functions focus on a number of other concepts. Functions are
pinnacle. The third level, or the application questions, was more general
problem-solving; they begin to regurgitate the information or can they apply
that information? One point I like to make here is that I used to weigh too
much on problem-solving. It was not fair because you are asking students to
do creative work in a stressful situation. I pulled it back to 30%.

Tim had mixed feelings about the overall student performance on the

midterm exam. He explained that students performed poorly on their syntax

knowledge. Tim also commented on his grading of the midterm exam, especially the

questions involving students in CPS. “Grades for the midterm exam especially for the

CPS part, were extremely soft; they [students] had lots o f credit for things that were

very wrong.” Tim also said that he gave partial credit for incomplete work.

For the fourth week (Appendix F), Tim explained his plans by stating, “ I want

to complete what I started during the previous week and continue teaching additional

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

62

C++ control structures.” Tim’s instruction during the fourth week also focused on the

imperative aspects of C++. Among the topics introduced and discussed was additional

information on C++ control structures (selection, repetition) and an introduction to

text files. The instruction during week four was textbook bound and was delivered

using Power Point presentations. The additional information on C++ control

structures during this week included nested control structures, control structures for

special case selection and repetition, break, and continue statements for modifying the

usual flow of control within a control structure. Due to time constraints, Tim did not

allow lab sessions after lectures during week four. The instructor-student interactions

were limited to clarifications o f syntactical details of the control structures in C+*.

The written assignment problems covered syntactical understanding of control

structures (nested IF, switch, for, nested loops statements, reference arguments and

text files). The programming assignments included adding C++ syntax to existing

partial codes provided by Tim. Students’ questions during Tim’s office hours in week

four focused on problems such as “dangling-else,” pass-by-value and reference

arguments, and properly opening and closing file streams.

Tim was asked about student progress with regards to CPS and OOP concepts

during the fourth week. Tim felt that class interactions, assignment grading and office

hours gave him insight into students’ understanding of OOP concepts and evolving

student mental models. Tim felt that students were beginning to understand the OOP

concepts, especially the concept of an object. According to Tim, “Some students’

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

mental models are expanding out enough that they are seeing where next things will

fit, but they do not know what the next things are yet.”

Tim also felt that some students should be able to develop solutions to the

programming problems from scratch. However, he felt that students were still having

difficulty transcribing code into C++ language during the fourth week.

Tim described his teaching experience as “ 100% positive” at the end of the

fourth week. He also felt that it was “tough” to evaluate how well students were able

to understand and apply CPS and OOP concepts at this point. According to Tim, “I

am not sure o f what students actually learned with regards to CPS during the fourth

week.”

Tim started the fifth week (Appendix F) focused on both the imperative and

the object-oriented aspects of C++ language. He continued discussing the concept of

classes during the first part of the fifth week and then discussed arrays. However, Tim

was unsure how well students were learning OOP concepts from his instruction.

“How they are developing their understanding of the OOP concepts? That I really

don’t know. They go out and figure it out by themselves and I make some suggestions

as to how they should think about it.” Tim began the fifth week instruction by

providing directions on how to take a pre-existing class and augment it with another

operation and write and test that operation. To further explain the concept, Tim made

two columns on the board, one for attributes and the other for operations. Then Tim

asked students to “describe a baseball player” and waited for student responses:

Tim: What attributes can we list here?

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

64

Student: Height

Tim: Ok. What else?

Student: Team.

Tim: Very good. Give me another one.

Student: Position

Tim. Great. How about the operations?

Student: How about create a new player?

Tim: Yea.

Student: Compute batting average?

Tim: Excellent. What else?

Student: Update statistics?

Tim: Very good.

During his Power Point (textbook bound) lectures, Tim explained the concepts

of the implementing class member functions. He also introduced program design

concepts such as designing and implementing new classes for specific problems as

well as concepts such as member function implementations, scope resolution operator

(::), and arrays (single and multi-dimensional). There were no lab sessions after the

lecture during the fifth week. Tim explained his rationale for week five programming

assignments as “discovering the concepts of object and class." Typically, in week

five, students were provided with a partial solution code for the problem and were

asked to complete the solution.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow ner. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

65

Students’ questions during the office hours in week five focused on

understanding of certain OOP concepts. Tim thought that students were having

difficulties understanding concepts, such as constructor names, constructor attribute

names, and constructor's argument names for the attributes. However, he argued

students were gaining an understanding of the concept o f object.

During the last day of the week, Tim provided the final exam. The final exam

was comprehensive in nature and was similar to the midterm exam. Tim explained his

rationale of the final exam questions as a way to evaluate students’ understanding of

the programming concepts and their applications. The final exam questions tested

students’ knowledge of basic vocabulary and definitions, specific concepts with

syntactical details, program output, and application questions without an emphasis on

CPS.

Tim felt students again performed poorly on syntax knowledge. He found that

students misunderstood the concept o f an assignment expression being an expression

and they did not make progress in understanding the concept o f object and class. The

most common mistake was to neglect naming the object properly. Students also faced

difficulties and even sometimes failed to develop a class from scratch.

During Tim’s final interview, he was asked about his perception of the

progress of the students had made and their ability to understand and apply CPS and

OOP concepts. Initially, Tim thought students would lack well-developed mental

models to create object-oriented computer programs. He remained concerned with

this idea until the end of the term.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

66

Tim described the nature of the CPS process that he taught to students as

“anecdotal.” He noted that the most difficult OOP concepts to teach and for students

to learn were “visualization of the objects and understanding class as a type.” He said

that students at the end of the term were still “immature” in their understanding of the

CPS process and OOP concepts. According to Tim, students had difficulties in

finding appropriate ways of organizing their solutions in part because OOP added a

level of complexity by obscuring the flow of control. Students had difficulties with

the idea of an object and how information flows or communicates in and out of a

program.

At the conclusion of the term, Tim believed he had been successful in

developing an “aggressive attitude” among students towards computer programming

and that he had developed a relationship with his students by interacting with them.

He stated, “I think I developed pretty good relationships with the ones who interacted

with me. But there is not much time in this short period to really interact with each

and with every one of them.”

Comparison of Plans vs. Actual Implementation

This section provides analysis o f the observations and field transcripts on how

Tim’s plans and beliefs differed from his actual instruction and assessment. Tim

planned his instruction for the introductory CS course to be “student-centered,” “like a

lab” and that only 50% of the class time would be spent lecturing. However, the

analysis o f data revealed that Tim’s class was teacher-centered, lecture-oriented rather

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

67

than “like a lab.” He spent more than 50% time on lecture throughout the term, and

less on lab session (first two weeks of the term only) with a primary emphasis on the

C++ language syntax only.

Tim planned to place less emphasis on the syntactical details o f the C++

language and also teach CPS to help students develop CPS skills. His plan was to

accomplish this by asking them to use visualization and solve problems in “English-

first” (i.e. problem planning). However, Tim did not provide any specific detailed

instructions on how to develop comprehensive CPS skills. During his lectures, he

periodically recommended that students use flowcharts to design a problem solution,

but he claimed that, “It is not important that they [students] draw a flowchart. What is

important is that they [students] visualize.” However, in actual implementation of

his instructional plans, Tim did not provide specific instructions on how to work out

problems in “English-first” or how to draw a flowchart. He also did not explain to

students what visualization actually meant or how students could achieve/use

visualization to solve problems. On the contrary, Tim commented that teaching

problem-solving seemed “time consuming.” The one area Tim did teach problem­

solving a technique was through preliminary problem analysis.

For the assessment, Tim’s goal and/or plan was to make sure that students

were able to develop CPS skills. As part o f this plan, Tim wanted to design 50% of

assignments (written homework and programming) so that students would develop

solutions from scratch. However, the analysis of assignments revealed that more than

50% of the homework problems had partial solutions. In them students were asked to

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

68

enter the missing code to get a final solution rather than developing the solution from

scratch. Moreover, the analysis revealed that this planned strategy of providing partial

solutions to develop the complete solution did not engage students in developing

comprehensive program analysis and design practices to develop and/or enhance their

CPS skills. The written exams focused on assessing students’ basic vocabulary, C++

syntax knowledge, specific concepts and the application of learned concepts, rather

than the development of CPS skills. In fact, Tim asserted that, “asking students to do

creative work in a stressful situation” such as exams would be unfair.

Tim planned to introduce the OOP concepts in a “non-confrontational way.”

The analysis revealed that Tim was successful in this goal because he was

approachable to his students. As documented by observation and through student

interviews, students’ comments were favorable towards his “non-confrontational”

approach to instruction. For example, Ann (student) said, “Prof. Tim cares, and he

pays attention.”

Student Profiles

This section includes profiles o f the four students who participated in the study

and a comparison of their CPS strategies and OOP performances. Each profile

includes a brief description of the students’ background and their approaches to the

problems provided in the formal interviews. Their class work (selected problems from

written home work assignments, programming assignments, quizzes and midterm and

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

69

final exams and excerpts from the student informal interviews) was also considered in

the development of each profile. Pseudonyms were used to assure confidentiality and

anonymity.

Students were given two problem sets labeled Set I and II to solve during the

two formal interviews. Problem Set I (AVERAGE-PRODUCT and CASH-

REGISTER) was given in middle of third week of the term, and Problem Set II

(PLAYER-STATUS and TRIP-TRACK.ER problems) was given towards the end of

the fifth week. Appendix G contains the problems.

For the AVERAGE-PRODUCT (Set I) and PLAYER-STATUS (Set II)

problems, proposed solutions with errors embedded were provided to the students.

Students were asked to review the solutions, debug the errors and generate the

expected output. Whereas, for the CASH-REGISTER (Set I) and TRIP-TRACKER

(Set II) problems, students were provided with a problem statement without a solution

and were asked to develop an entire solution.

Adam
Adam was a 19-year-old male student in his sophomore year. He had a score

of 590 in the quantitative portion of the Scholastic Aptitude Test (SAT) and a 3.12

GPA prior to taking this course. Adam registered for the course to fulfill the technical

elective requirements for his Engineering Physics major. He had no prior

programming background. Adam had taken Calculus classes prior to registering for

the programming class. In the course, Adam had a perfect class attendance record.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

70

Around middle o f the term (middle of the third week), Adam approached the

AVERAGE-PRODUCT (Set I) problem by compiling the provided solution code and

found syntax errors. The compiler identified syntax errors including (1) “missing ;

[semi colon] after identifier in the cin statement” and (2) “undeclared identifier.” To

correct these syntax errors he printed the solution code and the compiler generated

syntax error messages. Then he began to desk-check each line of the solution code in

sequential order. He circled the lines o f code he thought were generating errors.

He shifted to the computer to read each error message generated by the

compiler and began by double-clicking at each error message. This process allowed

him to examine the line o f code and/or areas of the code generating the syntax error(s).

He followed the messages and directions provided by the compiler and corrected such

errors as “missing ; [semi colon] after identifier cin in the statement” by placing the

semi colon after the identifier in the cin statement. When Adam read the syntax error

message “undeclared identifier” his strategy was to change program statements

without specifically thinking about the results o f such a change. This process did not

help him correct the error “undeclared identifier.” His next strategy was to continue to

guess by listing different choices for objects (on paper) and eliminating choices in a

sequential order. This trial-and-error strategy led him to reduce the syntax errors but

not eliminate them. Adam often injected more syntax errors while correcting the

existing errors. He spent most o f his time in correcting syntax errors without even an

opportunity to correct logic errors and ran out o f time. His final solution contained

syntax as well as logic errors.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

71

For the second problem (CASH-REGISTER, Set I) in the middle of the term

where no solution code was provided, Adam read the problem and then identified on

paper the real number objects such as purchase price, amount of purchase, and amount

of change. Next he referenced the textbook and class notes searching for a similar

problem solution. Later without any written plan to approach the problem solution,

he began entering C++ code directly into the computer, meanwhile referring to the

problem statement and his references. First, he entered the pre-processor directive

command #include <iostream.h>. He declared the objects (price, payment, change)

followed by the code to prompt the user to enter the purchase price within the main

function. After spending a few minutes to enter the entire solution code into the

computer Adam executed the code. However, the execution resulted in a syntax error

"not an 1-value.” Adam realized his mistake, double-clicked at the compiler generated

error message to reach the area generating the error and corrected the statement

"payment - price = change;” to “change = payment - price;” Later he encountered

problems with the output formatting especially with precision; the number of decimal

places in his floating-point variables were inaccurate. For example for his variable

"dollars” the output statement he coded was “cou t« setprecision(3) « dollars;”

instead he needed a coded statement "cout« setiosflags(ios:: fixed) «

setprecision(3) « dollars;” by first including the fixed-point format

setiosflags(ios:: fixed).

Basically, his strategies correcting these errors was to search for and review

similar example codes from his references for output formatting. Adam spent a

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

significant amount of his time in formatting the output without realizing that his

solution code was generating an incorrect output due to a logical error since he was

incorrectly determining the coin change. His solution code line to determine the coin

change was “cchange = change - dollars;” instead he needed his statement similar to

“cchange = int((change- dollars)* 100);” to accurately determine the number of cents

required. To correct the coin change problem, Adam referred to his references to

search for a similar example solution code to the given problem and found one. After

reviewing the textbook example solution code, Adam incorrectly guessed ways to

include a solution code statement “cchange = ((change- dollars)* 100);” Adam was

frustrated and randomly generated code to obtain the accurate coin change, but

ultimately he ran out o f time.

During the fifth week, Adam approached the PLAYER-STATUS (Set II)

problem with the solution code provided by compiling it. After compilation he

realized that the output was inaccurate. His next strategy was to trace the solution

code by inserting print statements (learned during class instruction) at certain key

locations in the solution code. The insertion o f print statements did help Adam solve

the problem. He traced through the solution code and detected the point at which the

value of the health attribute became illegal. Tracing also helped him to keep track of

the state of the object values at different locations in the code and to successfully

identify the effect of operations on the “health” attribute in the code to generate an

output free of errors.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

73

Next Adam worked on the TRIP-TRACKER problem (no solution code

provided). He identified the objects, methods and class on a piece of paper. He

referenced his textbook and class notes to search for examples that were similar to the

given problem and used them as a guide for solving the problem. Adam then entered

code into the computer by simultaneously referring to the problem statement and his

references to create a class (TripTracker), public methods (constructor, reset, purchase

gas, miles_per_gallon and cost_per_mile) and private methods (to ta lg a llo n so fg as ,

total_cost_of_gas and tripm iles). Adam incorrectly used a fo r loop to calculate and

print the gallons purchased, cost per gallon and miles driven. After completing and

executing the code, the compiler reported syntax errors. Some of the syntax errors

were “loop has no body,” “including a return type with constructor’s prototype” and

“missing : : scope operator.” Adam successfully corrected the errors by following the

error message instructions provided by the compiler and then by adding a needed

semicolon to close the loop, a return statement for the constructor, and the scope

operator : : in the header line of the member function defined in the class

implementation section. However, these corrections o f the syntax errors did not

obtain a correct result. Adam had a logic error because he had not defined the object

“cost.” He attempted to use the operations calculating cost that read and/or

manipulated data for “cost,” but the object “cost” never existed. To correct the logic

error he read his solution code on the screen sequentially and guessed at a correction

by defining different objects without considering the effects of the creation of new

objects. This guessing strategy generated no solution for the problem. His next

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

74

strategy was to invoke the VISUAL C++ debugger (learned during class instruction)

to divide the solution code into smaller sections and execute the solution code one line

at a time. This divide-and-solve strategy helped Adam examine his program solution

code in a step-by-step mode and to keep track o f all objects declared. By examining

the program solution code in a step-by-step mode, he pointed to his error and defined

the object cost. For his final solution Adam generated a correct output for the

problem.

Adam’s approach to solve problems without prior comprehensive

planning/designing was noticeable in the formal interview problems (Appendix G)

throughout the term. However, changes were noticed in Adam’s debugging

approaches. Around the middle of the term, Tim introduced inserting print statements

at several locations in the code to examine values o f the variables in pause and the

VISUAL C++ debugger to help students deal with the errors (syntax and logic).

Adam’s abilities to detect and correct both types o f errors improved towards the end of

the term, as a result o f class instruction on debugging. Adam successfully used print

statements in the PLAYER-STATUS problem to correct the logic error. He also

successfully used the VISUAL C++ debugger to divide the TR1P-TRACKJER problem

into smaller chunks dealing with them more efficiently as compared to middle of the

term problems.

An analysis of Adam’s class work problems (Appendix H) further described

his CPS strategies and OOP performances while solving the given problems. Adam

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

75

typically did not pre-plan his approach to problems, such as conducting problem

analysis, and/or by developing an algorithm. He approached them by directly

inputting the solution code into the computer. He typically designed his solution code

in terms of C-*-+ language code by converting the directions given in the problem

specifications line-by-line into C++ language. However, in some instances he

performed some incomplete problem analysis such as identifying object and methods

prior to generating the solution code.

Adam’s work (throughout the term) also revealed his misunderstanding of the

concept of object. He initially named/declared objects that he never used in his

solution code. Adam’s class work also revealed misunderstandings towards the

beginning of the term with control structures such as selection and loops. For

example, Adam did not use compound statements (when needed). As a result, the

compiler defaulted to unpaired " i f s and elses." In some instances he used the

assignment operator =, instead of using the relational operator = =, generating an

infinite loop situation since the expression with assignment =, was placed in a

statement prior to the loop. However, by the end of the term Adam improved his

understanding of control structures such as loops. For example, for the RE-WRITE A

LOOP problem (Appendix H), Adam rewrote a fo r loop into a while loop

demonstrating his basic level o f understanding of both types o f loops. Adam did not

deal with function arguments appropriately. He said, “I am always confused between

the actual and the form al arguments."

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

76

Adam approached the debugging process using multiple strategies throughout

the term (1) following the compiler generated messages/directions and (2) guessing.

However, from the middle towards the end of the term his approach to the debugging

process also included: (1) performing a desk-check to mimic and execute each C++

statement as the compiler would perform (writing each object encountered in the

solution code and then listing each value that should be stored in the object as each

input and assignment statement was encountered), (2) program tracing (using the print

statements into key location in the program to track the object values), and/or (3) using

the VISUAL C~+ system interactive debugger. In many instances, program tracing

and the use of VISUAL C++ system debugger helped Adam to divide-and-solve his

problems.

During the informal interviews, Adam explained the computer problem solving

process as:

When you are given a problem you need to read the problem, what the problem
is asking you to do. If the problem is asking you to write a class so you write a
class. If the program is asking you to write a while-loop, then you write a loop.
A programmer has to first create a blue print before he can solve the problem.

Adam viewed OOP as “writing programs based on objects, where objects

interact among each other and objects hold values.” He expressed his feelings towards

the class by complaining about the lack o f actual programming and examples done in

the class. According to Adam, “I am used to Calculus class where half of the

assignments are done in class, so students know how to solve the homework problems

since they have seen many examples.” When asked about his reaction to the quizzes

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

77

with respect to CPS involved, Adam replied, “Quizzes are mostly about syntax and

vocabulary of the C++ but not about problem-solving and programming.” He further

explained his feelings towards class instruction. “During the first three weeks we just

copied programs; we need to write programs from scratch.” Adam’s study practices

included reading each chapter in the textbook prior to and after attending the classes

and working on homework problems.

Throughout the term, Adam completed and submitted all his written home

work and programming assignments on time and earned 100% grade on average. His

average score for all quizzes was 80%. For the midterm exam he earned 85% and

82% in his final exam. His final grade for the course was “B.”

Ann
Ann was a 30-year-old female student in her freshman year. She had a GPA of

2.67 prior to taking this course. Ann’s SAT scores were not available. However, in

the institutional entrance exam in Mathematics, Ann obtained 75% (grade C). She

registered for the course to fulfill her major course requirements in computer science.

Ann had no prior programming background but she had taken courses in mathematics,

including Elementary Mathematics and Pre-Calculus, prior to registering for the class.

Ann had perfect class attendance record.

Ann explained that she had grown up in one of the southern states where she

had to face racism on regular basis. According to Ann, “My way to deal with the

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

78

racism was sports and I love sports.” Ann wanted to earn a college degree in

computer science to pursue a career as a computer programmer.

For the AVERAGE-PRODUCT (Set I) problem in the middle of the term

Ann compiled the solution code and encountered syntax errors. Her strategy in Fixing

syntax errors was to read the error messages generated by the compiler and then

double click at the error messages to correct them on the computer. Ann responded to

the exact code line(s) and/or the area of the code(s) generating the syntax errors. She

corrected the syntax error “newline in constant” by adding the missing double quote

i.e. changing the given code line “cout « “Please enter the values « endl;” to “cout

« “Please enter the values” « endl;” For other syntax errors, such as “undeclared

identifiers,” Ann read each line of the code in a sequential order, searching for code

lines that were generating errors and correcting the errors by following the messages

and directions provided by the compiler until she eliminated all the syntax errors. She

compiled the code again without any syntax errors but was stumped to find out that the

output was incorrect because the code was not generating the value of the object

product. Ann reviewed the code again in a sequential order line-by-line and from top-

to-bottom and was able to figure out that statement “product =

numO*numl *num2*num3*num4;” needed to be placed prior to the statement “cout

« “The product is:” « product« endl;” She was successful in generating the

correct output.

Ann read and re-read the second problem, CASH-REGISTER (Set I) problem.

On a piece o f paper she identified cash register, clerk and change as objects, amount of

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

79

purchase, payments and the amount as attributes o f the objects and change (number of

dollars, quarters, dimes, nickels and pennies) as operations from the given problem

specification. Next she searched for a similar example program code from the class

references (textbook and class notes). Once she found a similar example, she copied

the code from the example program code by altering the code sequence hoping that it

would work for the CASH-REGISTER problem also. She entered the pre-processor

directive “#include <iostream.h>” followed by another pre-processor command

“include <math.h>.” Her main program code included statements declaring the

objects, followed by the statements that allowed the user to enter values, such as

purchase amount and amount paid.

After completing her coding, Ann compiled her solution code and encountered

a syntax error, “undeclared variable,” because o f the missing declaration of “purtotal”

identifier. To correct this syntax error, her strategy was to double click at the error

message generated by the compiler to identify the location in the code generating the

error. Ann declared the identifier “purtotal” in her solution code. She compiled the

code again but was unable to produce the correct output since her solution code had

logic errors because o f her calculations for change (dollars, quarters, dimes, nickels

and pennies). In order to generate the correct code, Ann wrote on a piece o f paper

different possible codes and eliminated the ones she deemed incorrect to calculate the

correct amount o f change. However, this strategy did not help her generate the correct

solution code. To calculate dollars in change, Ann had the statement “dollars =

change;” whereas she needed a statement similar to “dollars = int(change);” followed

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

80

by “coinChange = int ((change - dollars) * 100);” To calculate quarters, dimes,

nickels and pennies she generated the following code respectively “quarters = 100%

6.92; quarters = %25; dimes = /10; dimes %; nickels/5; nickels%; pennies = nickels;”

However, she needed statements similar to “quarters = coinchange / 25; coinChange =

coinChange % 25; dimes = coinchange / 10; coinChange = coinChange % 10; nickels

= coinchange / 5; coinChange = coinChange % 5; and pennies = coinChange;”

respectively. Later Ann guessed by changing statements without specifically thinking

about the effects of such a change on her solution. However, she was unable to find

the correct solution in the allotted time for the CASH-REGISTER problem since her

program contained logical errors.

In the fifth week, Ann began her work with the PLAYER-STATUS (Set II)

problem by compiling the given solution code. Next she used the VISUAL C++

debugger to trace the solution code. The VISUAL C++ debugger allowed her to

examine the code in smaller segments and one line at a time. She studied the changing

values of variables at the different stages of the program execution but was unable to

figure out the operation that was affecting the health attribute. Ann changed different

operations without realizing the effect o f changes made. She spent a significant

amount o f her time in changing the given code and operations and then changing them

back. Meanwhile she ran out of time in the process. Her final solution contained

logic errors and Ann did not consider working on them.

For the TRIP-TRACKER problem (Set II) Ann began by reading the problem

and searching for examples similar to the given problem in her class notes, textbook

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

81

and the Internet. Ann was familiar with the use o f search engines over the Internet

(class instruction was not provided on using Internet to find example solution code)

and found a similar example. Later she copied and pasted the solution onto the editing

area o f the Visual O + project and then adjusted the code. Her solution code included

the declaration of the Trip-Tracker class with private and public methods in the class

declaration section. For the private method Ann made a declaration of the following

objects as data members: "Trip Tracker, Gas, Cost-Gas, Miles-driven” and for the

public method she declared the following member functions: “Trip-Tracker (), reset(

), get_cost_gas(), get miles_driven() and cost trip () .” Ann used a while loop to

allow the user to enter the gallons purchased, cost per gallon and miles driven. After

compilation o f the solution code, Ann encountered syntax errors because she had used

the assignment operator = instead of the relational equality operator = = in the tested

expression of the while loop and also placed a semicolon at the end of the while loop

parentheses. To correct these errors Ann double clicked at the compiler provided error

messages to reach the area(s) of the code generating the errors. She corrected the

errors by replacing the assignment with the equality operator and by removing the

semicolon from the end of the while loop. Later Ann compiled her solution code but

found her output to be incorrect since her solution code included logic errors because

(1) she misunderstood the operator precedence and (2) there was a division by zero

attempted. In case of the first logic error, her solution code included “milesPerGallon

= endMileage - startMileage / gallonsUsed;” However, the code should have been

similar to “milesPerGallon = (endMileage - startMileage) / gallonsUsed;” placing

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

82

division at a higher precedence than subtraction. In case of the second logic error Ann

computed and returned the average milesPerGallon. To avoid a division by zero error,

she did not return zero, meaning she did not know how and when the Total-Gallons-

Of-Gas variable was zero.

Her strategy to correct the logic errors was to review her solution code line-

by-line in a sequential order on the computer screen but she was unable to find the

problem. Next she printed her solution code and desk-checked the code. During the

desk-checking process, Ann wrote different possible code combinations eliminating

the ones that in her opinion did not work to attain the correct solution. After spending

a few minutes on desk-checking without producing a result, Ann invoked the Visual

C++ debugger to execute her solution code and then examined one line at a time and

different variable values with each pause. She was unable to detect her logic errors in

the time allotted.

Throughout the term, for the formal interview problems (Appendix G)

changes were noticed in Ann’s debugging approaches but her approach to solve

problems remained unchanged; no comprehensive plan and/or design was used prior

to finding the solution code. She successfully used VISUAL C++ debugger to detect

and correct the logic error in the PLAYER-STATUS problem. She also desk-checked

and used the VISUAL C++ debugger for the TRIP-TRACKER problem. Ann’s

abilities to detect and correct both types o f errors improved towards the end of the

term, as a result of Tim’s instruction on debugging techniques such as desk-checking,

VISUAL C++ debugger.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

83

The analysis of Ann’s class work problems (Appendix H) revealed that

throughout the term she typically approached problems without planning, beginning

her solutions by entering the codes directly into the computer. However, in some

instances Ann did approach the problem solution by providing a preliminary problem

analysis and design such as, identifying the objects, attributes, operations and methods

prior to entering her solution code into the computer.

Ann’s work and conversations during the informal interviews revealed that

she had difficulties with the concept o f object throughout the term. For instance, she

did not name, or she forgot to name, the objects properly in many of the given

problems. Ann had difficulties in generating the correct values of the objects, i.e.

variables. For instance, in homework problems towards the middle of the term and the

end of the term, the problem asked the students to obtain the values of the objects from

the provided solution code. However, Ann provided the resultant values in the wrong

objects. Her work also revealed the difficulties she faced with the concept o f class

and writing the problem solution from scratch. For example, for the SALARY-

CLASS (Appendix H) she was unable to correctly develop the salary class and

calculations involved for the problem. For the operation retirement benefits she

returned 5% of the salary. However, she needed a more complex solution by

developing a function in the implementation section o f the Salary class than returning

the percentage of the salary in the main program. However, her operations and

attributes for the SALARY-CLASS problem were correctly performed.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

84

Ann also had difficulties throughout the term identifying the correct

sequencing of the objects and their values in complex control structures such as loops.

For instance for the RE-WRITE A LOOP problem (Appendix H) where Ann had to

rewrite a fo r loop into a while loop, she needed to rotate an angle from zero to pi and

print out the values. The initialization of the code for the loop was inside the body of

the loop causing it to be recalculated each time. In her solution code the loop was

being controlled by an object called “angle.” She initialized “angle” to zero from

inside the loop, printed the sine o f the “angle” and then incremented the “angle.”

However, these instructions led to an infinite loop situation where the solution code

would print the value of the sine o f zero indefinitely.

Ann approached the debugging process throughout the term by first reading

error messages generated by the compiler and then double clicking at the error

messages. By double clicking Ann was able to reach the exact code line(s) and/or the

area of the code(s) that generated the syntax errors; from this point she corrected the

error messages by following the instructions given by the complier. However, in

many instances she was unable to understand the error messages and directions

provided by the compiler. According to Ann, “It is difficult to decipher these

[compiler] messages.” By the end of the term, she also used the desk-checking

technique to hand-trace each line of code in a sequential order and the Visual C++

debugger to execute the code one line at a time.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

85

During the informal interviews (towards the end of the term) Ann was asked

about her own understanding o f problem-solving and OOP. Ann responded without

providing any supporting examples:

(1) Understand the problem (2) analyze the problem (3) research and build
parts of the problem (4) put everything together i.e. design (5) test the design
and fix any errors and (6) implement working program.

Ann described her OOP programming process without supporting examples as

consisting of two parts: (1) descriptive information about the object type and (2) the

specifics of the objects. Ann assumed from her class instruction that in object-

oriented programming most of the code already exists. According to Ann, “the

teacher gave us most of the classes which were already written and we just had to fix

some parts of the program and not much was given from scratch.” When asked about

her understanding of OOP concepts Ann replied, “ 1 see the objects as classes or items.

Objects can be reused. The values, arguments, attributes that are hidden are private,

i.e. information that nobody really needs to know. You do not want this to be altered.”

When asked about her feelings and experiences in the introductory OOP

class, Ann replied, “This class is very difficult but I learned a lot.” Ann described her

study practices as “sticking close to the textbook, and class notes, memorizing

definitions.” When asked about her reaction to the graded class work, Ann replied, “I

am satisfied with my grades.”

Throughout the term, Ann did not complete and submit all her written

homework and programming assignments on time and earned 82% grade on average.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

86

Her average score for all quizzes was 70%. For the midterm exam she earned 75%

and 72% in her final exam. Her final grade for the course was “C.”

Mel
Mel was a 22-year-old female student in her senior year. She had a GPA of

2.8 prior to taking this course. Mel’s SAT score in the quantitative portion was 500.

She registered for the course to fulfill her required elective requirements from the CS

department. Mel had no prior programming background. She had taken courses in

mathematics including College Algebra and Business Mathematics at the college level

prior to registering for the class. Mel did not attend all classes.

Mel’s reason for taking this course was her father. Mel explained, "My father

works as a computer consultant and I might want to minor in Management

Information Systems and this class might help me. Besides it is required that I take

one computer class for my major.”

At the middle of the term, to solve the AVERAGE-PRODUCT problem (Set

I), Mel compiled the code and identified syntax errors. Her strategy to fix the syntax

errors was to read the error messages provided by the compiler and correct the given

solution code by guessing in order to alter the sequence of the given solution code.

For instance, when Mel encountered the “sum as undeclared identifier” she declared

the sum identifier at various other locations in the solution code. This strategy of

introducing code led to the introduction of more syntax errors, in particular the

“undeclared identifier” error. Mel repeatedly made similar mistakes and in her final

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

87

solution she had several syntax errors including “undeclared identifier, left operand

must be 1-value” she ran out of time prior to removing syntax errors and never

considered potential logic errors.

After Mel read the second problem, the CASH-REGISTER (Set I) problem,

she referred to the textbook and the class notes to search for similar problems. After

finding a similar problem, Mel entered code directly into the computer from the

references assuming that the code she copied would work as a problem solution. Her

solution code included the preprocessor command “#include <iostream.h>” followed

by object declarations such as price, payment and change. Next she added C++ code

to ask the user to input values followed by calculations for change, number of dollars

needed in change, quarters, dimes, nickels and pennies. Finally she inserted print

statements to print out the desired results. After entering the code into the computer,

Mel compiled the code and received the syntax error: “error LNK.1120:1 unresolved

external error executing link.exe..” because she created a Win32 Application project,

rather than a Win32 Console Application project. To correct this error, Mel created a

new project in VISUAL C++ environment and then successfully ran the code without

the “LNK 1120” error. However, she encountered several other syntax errors such as

undeclared identifier “purchase space total” since she attempted to use the variable

“purchase space total” but had not declared this variable prior to its use. To correct

this error Mel introduced new variables into the solution code without planning for

their use. This strategy led to more syntax errors such as “undeclared identifiers.”

Later Mel ignored the error message “undeclared identifier” and read other error

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

88

messages generated by the complier in the hope that if she could correct other syntax

errors the error “undeclared identifier” would also be corrected. Her strategy to

correct the syntax errors was to guess code to be entered into the existing solution

code without recognition of the error messages/directions generated by the complier.

In her final solution to the CASH-REGISTER problem, Mel had several syntax errors

as well as logic errors. Some o f her logic errors included incorrect calculations for

determining quarters, dimes, nickels and pennies such as her calculation for

determining quarters was “quarters = change - 25;” However, she needed a statement

similar to “quarters = coinChange / 25; and coinChange = coinChange % 25;”

Close to the end of the term, Mel approached the PLAYER-STATUS (Set II)

problem, by compiling the given solution code. She used the Visual C d e b u g g e r to

identify errors. The debugger helped Mel to examine the values of the variables by

pausing the given code. Next Mel added and transposed code. Mel added a new

member function in the class implementation section and than altered the sequence of

the given solution code. However, guessing at code led to syntax errors. One such

syntax error was generated since she forgot to include the class name and scope

resolution operator :: in the header line of member functions defined in the class

implementation section. Mel was unsuccessful in figuring out the syntax errors and

did not recognize the logic errors in the allotted time.

For the second problem, TRIP-TRACKER (Set II) Mel identified a list of

“things” on a piece o f paper: “buy-gas, amount-of-gas, cost-of-gas, miles-driven, Ave-

mpg and cost-per-miles.” She then referred to her textbook and class notes and

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

89

searched for example solution codes similar to the given problem. Next she moved

directly to the computer and entered her solution code for the given problem. Mel

spent a significant amount of the allotted time thinking and entering the solution code

for the problem. Her solution code started by including the pre-processor commands

“#include <iostream.h>, ^include “TripTracker.h” followed by object variable

declarations with initialization of some of the object variables. Later she included

statements allowing the user to enter values and output the values. At the completion

of her solution code, Mel compiled her solution code and received a syntax error “fatal

error C l083: Cannot open include file: 'triptracker.h': No such file or directory Error

executing cl.exe." This error was identified because the “triptracker.h” file never

existed. Mel was unable to solve the problem in the allotted time. Several other

syntax errors were present in her final solution code. As a result, Mel was unable to

generate any solution for the given problem.

Changes in problem-solving strategies were not noticeable in Mel’s formal

interview problems (Appendix G) throughout the term. She approached the problem

without comprehensive planning. Throughout the term, she struggled to understand

and interpret with the compiler generated messages. However, she did use the

VISUAL C++ debugger towards the end o f the term but was unsuccessful in detecting

and correcting errors (syntax and logic) using this approach. Mel did not improve her

debugging abilities throughout the term.

The analysis of Mel’s class work problems revealed that she approached the

solution o f problems without developing a plan and went directly to the computer to

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

90

enter code. In a few cases she did identify objects prior to approaching the solutions.

Her approach to identifying problems when solutions were provided involved

transposing or altering the sequence and guessing at new code to be entered. For

example, for the MONEY-CLASS (Appendix H) problem Mel tried to transpose the

constructor from the provided class declarations for the “Money” class. This strategy

of transposition and guessing caused the introduction o f a variety of syntax errors such

as using the same name for a data member of a member function and defining more

than one default constructor for a class.

Mel's class work also revealed that in several instances her solution code

contained information that was not needed and she misunderstood what was required

to solve the problem correctly. For example, the COST-OF- FENCE (Appendix H)

problem asked for a prototype for the constructor, but she provided a declaration of an

object. When the problem asked for a prototype for a member function she gave what

appeared to be a call to the member function and when the problem asked to declare a

class she provided what appeared to be an object creation not a class declaration.

However, for the COST-OF-FENCE problem she provided the private and public

members correctly since she could copy similar code from the textbook. Mel also had

difficulties in understanding loop sequencing. For instance, for RE-WRITE A LOOP

(Appendix H) a loop problem where she had to rewrite a fo r loop into a while loop,

Mel did not sequence the body of the loop correctly.

From the interviews and the analysis o f Mel’s work, her solution codes

typically included the use of sample C++ syntax. Following and copying the sample

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

91

code did not help Mel in generating correct solution. She was overwhelmed close to

the end of the term and was not comprehending the course material. According to

Mel, “Too much is going on, too much information for me at this time and I am

reaching a point where I do not even know what questions to ask [the instructor] any

more and I do not even know what to do.”

Mel approached the debugging process by reading the error messages provided

by the complier. However, mostly she did not understand the messages or the

compiler provided directions to correct the errors. She also used the VISUAL C++

debugger but was unable to use it effectively throughout the term.

Mel explained her understanding of the OOP concepts and the CPS process:

CPS is to know what objects need to be declared. Replicate previous
programming assignments. However, to try to figure out what they want
from you is the hardest. OOP is like when you use the object you put
information to get the output. Object is like an alarm clock or the oven like
we discussed in the class. I am not sure what is a class'?

Mel’s study practices included memorization of definitions, reading the

textbook and class notes. According to Mel, “I just repeat what I leam in the class.

Mostly I depend on memorization. If I see some example in the book or somewhere

then I try to solve the given problem based on the example given.”

Mel felt that having a strong mathematical background would have helped her

in becoming more comfortable in this class. Mel explained her learning experience in

the class as “difficult.” According to Mel, “I think that the class is hard since it builds

upon what you already know and the class speed was too fast.”

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

92

Mel, throughout the term, did not attend the class regularly. She did not

understand several concepts in the class and as a result was unable to complete and

submit all her written homework and programming assignments on time. Her grade

for the assignments was 65% on average. Her average score for all quizzes was 85%.

She earned 80% on the midterm and 65% in the final exam. Her final grade for the

course was "C.”

Jose
Jose was a 27-year-old male student in his sophomore year. He had a GPA of

3.5 prior to taking this course. Jose’s SAT scores were not available. He registered

for the course to fulfill his major requirements in computer science. Jose had no prior

programming background. However, he had a strong mathematical background. He

had successfully completed Calculus 1, Calculus II, Calculus 111 and Differential

Equations. Jose did not attend all classes.

At the middle of the term, when Jose received the AVERAGE-PRODUCT

problem (Set I), he compiled the problem and found syntax errors. His strategy to

correct syntax errors was to read each error message provided by the compiler and

checked each error by double clicking at the error message. By double clicking at the

error messages in a sequential order, Jose reached the area(s) or the exact line(s) of the

code generating the error(s). For the error message “new line in constant” he added

the missing double quote at the end of the message string and corrected the error. Jose

used the same error correcting strategy to correct other syntax errors until he corrected

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

93

all of them. While Jose was sequentially reading the provided solution code to correct

the syntax errors, he also detected and corrected logic errors such as an incorrect

sequencing of the statements. For example, Jose correctly placed the variable

“product” prior to the print statement for the “product.” Jose generated a correct

solution in the allotted time.

For the second problem, the CASH-REGISTER problem (Set I) Jose read the

problem. Next he searched for a similar problem solution by referencing his textbook

and class notes. His next strategy was to identify “Purchase Total, Payment, Change,

Dollars, Quarters, Dimes, Nickels and Pennies” as objects on a piece of paper. Later

Jose wrote the analysis o f the given problem (as instructed in the class) as follows:

At the cash register we will need the purchase price and the payment. The
change = payment - purchase price and will be a real number. The whole
part will contain the change in dollars and the fractional part will contain the
change in cents i.e. quarters, dimes, nickels and pennies. So if we have $10 as
a payment to buy something for $3.08, the needed change will be $6.02. The
$6.92 change will contain $6 bills, 3 quarters, 1 dime, 1 nickel, and 2 pennies.

Jose continued with the program design by listing (on a piece of paper) the

input, processing steps and the outputs (IPO):

Input: user will be asked to input price and payment.
Processing: Calculate the change. Change = 10.00 - 3.08

Calculate whole part o f the change i.e. dollar amount
Calculate fractional part of the change

Output: Purchase Total 3.08
Payment 10.00
Change 6.92
Dollars 6
Quarters 3
Dimes 1
Nickels 1

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

94

Pennies 2

Next Jose started to enter the C++ code into the computer with the help from

his problem analysis, inputs, outputs, textbook and the class notes. His solution code

included the preprocessor command “#include <iostream.h>” and main function

followed by the variable declarations such as “Purchase Total, Payment, Change” as

doubles (real numbers) and “dollars, quarters” as integer values. Then he inserted the

statements allowing the user to enter values for the purchase total, to calculate the

change followed by output statements printing the purchase total, price and change.

After entering the solution code, Jose compiled the code. However, he had a syntax

error missing a semicolon before an identifier. Jose double clicked at the error

message so he could access the area(s) and/or lines generating the errors and then

corrected each error by following the directions provided by the compiler and by

placing the missing semicolon where required. Jose complied the solution code again

and had no syntax errors. He continued by writing the code to calculate the dollars

and cents needed in the change followed by the statements to calculate quarters,

dimes, nickels and pennies and then coded the statements to print the change in dollars

and cents. After entering his solution code, Jose complied the code and identified

syntax errors since he had forgotten to enter “ ; ” at the end of an assignment

statement and had misspelled the identifier “change.” His strategy to correct syntax

errors was reading the code line-by-line, sequentially from top-to-bottom and then

correcting the errors using the compiler messages and directions.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

95

After correcting the syntax errors, Jose compiled the program and found the

solution code was free of syntax errors. However, his output was incorrect due to

logic errors. His statements calculating quarters, dimes, nickels and pennies were not

generating the fractional parts correctly. Jose obtained the hard copy of his solution

code and started to desk-check his solution code line-by-line in a sequential order until

he found the logic errors. He tried various combinations of calculations until he

eliminated incorrect calculations and generated correct calculations and the correct

solution.

Close to the end of the term, for the PLAYER-STATUS problem (Set II),

Jose began by compiling the given code. He instantly realized that the program was

generating the wrong output. Next he checked the program on paper in a sequential

order and pointed out that one o f the operation was affecting the health attribute.

However, he did not mention the operation. Jose invoked the VISUAL C++

debugger, which helped him to execute his solution code one line at a time and to look

at the values of variables using the pause feature. Jose successfully changed the

operations that affected the attributes of the object. He ran the program and generated

the correct results.

For the second problem, the TRJP-TRACKER problem (Set II), Jose spent

time reading the problem to understand it. Next he identified on paper a class and

named it “TripTracker,” followed by the identification of “total cost, total miles, total

gas” as objects, “TripTracker” as constructor, “total cost, total miles, total gas” as

private methods and “add-gas, cost-of-gas, miles-driven, average-mpg, avg-cost-per-

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

96

mile” as public methods as part of his problem analysis. Then Jose entered the

solution code into the computer. His solution code included a class called

“TripTracker” with a class declaration and implementation sections followed by the

main function. After entering the code entry for the declaration section of the

“TripTracker” class into the computer, Jose compiled his partial solution code and

encountered syntax errors because he forgot to terminate the class declaration section

with a semicolon. His strategy to correct the error was similar to his method for the

CASH-REGISTER problem at the middle of the term, double clicking at the error

messages and following the directions provided by the complier. He corrected the

needed semicolon in the declaration section of the “TripTracker” class. Jose

continued to enter his remaining solution code into the computer and then complied

his solution code. He encountered syntax errors since he included (I) a return type

with constructor's prototype, (2) used the same name for a data member as for a

member Junction, and (3) forgot to include the class name and “scope resolution

o p e r a t o r in the header o f a member fimction. Jose repeated his syntax error

correction strategy to successfully correct all the syntax errors. However, he had a

logic error because the loop in the solution code had one less iteration than needed.

To correct this logic error Jose invoked the VISUAL C++ debugger allowing him to

examine the code one line at a time and the variable values used for his loop at each

pause. Jose corrected the logic error, compiled the solution code, and generated the

correct output for the TRJP-TRACKER problem in the allotted time.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

97

Jose did not use a similar approach to plan the solution from the middle o f the

term towards the end of the term. For example, in the middle of the term for the

CASH-REGISTER problem he listed the input, processing and the output for the

problem. However, for the TRIP-TRACKER problem at the end of the term he did

not generate a similar listing. Throughout the term, Jose did not approach the problem

by developing a comprehensive solution plan and design. Typically, he went directly

to the computer to code the solution. Jose improved in his debugging strategies from

the middle to the end of the term. As soon as he received instruction on desk-checking

and VISUAL C++ debugger, Jose successfully adopted these debugging tools and

solved his problems.

The analysis of Jose’s class work revealed that he generally declared the

objects, named the objects and constructed the class constructor correctly. His work

also revealed that he understood what and how function arguments were needed in

developing the solution. Jose at times misunderstood control structures (loops being

infinite etc.) and simple data structures such as arrays.

In one situation while solving his written homework problems, his work

revealed misunderstandings such as “Array index bound errors.” For instance, the

following code showed the array’s indices ranged from 0 through 6. However, the

array’s indices inside the fo r loop were incorrect and ranged from 1 to 6 since the

initializing list started with variable i = 1.

const int index = 6;
int grades[index];
int i;

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

98

for (i = 1; i <= index; i++)
{

cout« Please enter a grade:
cin » grades [i];

}

Jose typically approached the debugging process throughout the term by

reading each error message provided by the compiler, double clicking at each error

message. He performed desk-checks and also utilized the VISUAL C++ debugger

from middle to the end of the term as soon as he learned about it. By using the

VISUAL C++ debugger he examined the code one line at a time and different variable

values with each pause.

During the informal interviews, Jose’s explained his understanding of the CPS

process. According to Jose, “CPS resembles mathematics problem-solving. However,

finding a computer solution is a complex process.” Jose listed the steps he used while

solving computer problems as “(1) look at the input/output, processing and (2) search

for similar examples to the given problem.”

Jose explained some OOP concept understanding as follows:

An object is anything that holds a value. An agent can be somebody who
initiates the action. Operations are individuals that take somebody to get
involved. However, I am confused about the difference between the attributes
and operations.

Jose’s study practices included mainly memorization. His overall reaction to

the class and grades was favorable. According to Jose, “ I am really enjoying this

class.”

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

99

Throughout the term, Jose completed and submitted all his written home- work

and programming assignments on time and earned 100% grade on average. His

average score for all quizzes was 98%. He earned 93% on the midterm and 95% in his

final exam. His final grade for the course was “A.”

Instructional Strategies and their Impact on Student Learning

This section contains a synthesis of the results directed at answering the

research questions posed in this study. The first research question addressed the

characterization of Tim’s instructional strategies to engage students in CPS. The

analysis o f the results revealed a teacher-centered, text-bound lecture/lab instruction

that was focused on syntactical details rather than the underlying programming logic.

Tim focused on the imperative paradigm and/or procedural aspects with an

introduction to the object-oriented aspects of the C++ language. Exams and

assignments were geared towards the memorization o f basic definitions and facts,

knowledge o f specific programming concepts and their applications, and syntactical

details o f the C++ programming language.

Typically, Tim’s instruction used a Power Point presentation and taught

students to find a computer solution to a given problem without developing a

comprehensive plan/design. He frequently used “example codes” from the textbook

and/or other sources to teach programming. He also provided students with partial

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

100

code, asking them to develop a complete solution code. During his instruction, Tim

avoided a discussion of problem planning due to lack o f time. Tim felt that teaching

CPS in the introductory CS class was “time consuming” and that was unfair to

demand students to complete “creative work i.e. problem-solving in stressful

situations” such as exams and quizzes. Tim did not consistently teach any formal

methodology of CPS such as problem-solving heuristics and/or strategies to engage

students in CPS. Instead, he introduced CPS concepts occasionally throughout the

term. For example, in one particular instance (towards the end of second week), Tim

showed and instructed students to observe the following CPS process (in general) to

solve given problems:

1. Analyze and understand the problem.
2. List inputs/outputs and processes.
3. Identify/define objects, methods and class.
4. Code and test.

However, one area Tim was consistent in teaching CPS was in

identifying/defining objects, attributes, methods and class for the given problems in

order to engage students in preliminary problem analysis, a CPS strategy. In addition,

Tim recommended the use o f abstraction (hide details and focus on a general view of

the problem), visualization and thinking of related problems (from textbook and class

notes) while solving the given problems. Tim also recommended that students think

about the problem solutions in terms of the English language (work on the given

problem in “English first” and then later think in terms of computer logic and/or C++

language codes). However, Tim did not provide specific instructions or problems for

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

101

students to practice abstraction, visualization and thinking in “English first.” In other

words, he seemed to believe that students needed to leam programming C++

syntactical details first to solve computer programming problems rather than applying

a comprehensive problem-solving approach (a comprehensive plan and design and

then code).

Tim planned his instruction to place less emphasis on syntactical details of

the C++ programming language. He also planned to design assignments in a manner

where at least 50% of assignments would allow students to develop an entire solution

from scratch. However, his implementation o f the instructional plans did not achieve

the stated goals. Students understood the effect of Tim’s instruction on their learning

of CPS and OOP. As Ann noticed, “the teacher gave us most of the Classes which

were already written, and we just had to fix some parts o f the program and not much

was given from the scratch,” Adam agreed, saying, “In this class we just copied

programs. There was not much programming.”

Most of the student effort in Tim’s class concentrated on learning details of

the syntax o f C++ language. The instructional emphasis on syntax and/or the

imperative aspects o f C++ language also demanded students to think in an analytical

and procedural i.e. sequential and/or mechanical manner.

The second question dealt with identifying how novice students solve

computer problems in an introductory computer science course with an introduction to

object-oriented programming. The analysis of the students’ results revealed that in

developing an original solution code for the given problems, nearly all students

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

102

approached the problems without a comprehensive written plan/design throughout the

term. This approach appeared to be the impact of the instruction they received in class

since Tim did not instruct students to prepare a comprehensive plans/design prior to

solving computer problems. Without a written plan/design, the students’ approach to

CPS was focused on directly entering solution code into the computer and guided by

the C++ commands and instructions. Their knowledge of programming concepts

such as objects, operations, control structures (selection, repetition) etc. was

inadequate, fragmented, and inaccurate. In most computer problem situations,

students lacked creativity and selectivity to effectively find the computer solution

using OOP concepts.

The analysis also revealed that students typically used four strategies to

develop the computer solutions. In order to understand the given computer problem,

students (except Mel) read the problem underlining key words and/or sentences. After

becoming familiar with the problem, students then did a preliminary problem analysis

although that analysis was often incomplete. This analysis typically included listing of

input, process and output, an identification of objects, methods {private and public),

class, and attributes. Throughout the term, Tim encouraged and demonstrated the

identification of object and methods. After a preliminary problem analysis, they

typically searched for sample code and/or examples to solve the given problem.

Students referred to their textbook and class notes to search for possible solution codes

from similar problems. They also sometimes drew analogies from their personal life

experiences. Then they generated C++ code by translating the given problem

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

103

specification line-by-line and/or word-by-word by using the programming knowledge

constructs learned in the class with a focus on C++ syntax. Their reliance on these

references (textbook and class notes), personal life experiences, and application of

problem solving often confused them, but at the same time it helped them generate the

C++ text of the solution code. Their reliance on references decreased and the reliance

on analogies increased as the term progressed.

The strategy of using model code appeared to be a result of the class

instruction. Tim often used “example codes” and encouraged students to think of

related problems from the textbook and class notes while solving the given problems.

Later, they used a trial-and-error strategy and tried various combinations of O — code

to solve the given problems. This process often confused them or they were unable to

explain how they reached the problem solution.

After compiling the solution code, students typically encountered syntax and

logic errors. Syntax errors occurred primarily due to students’ misunderstanding

and/or lack of knowledge of programming syntax and constructs. Logic errors often

occurred due to their inability to understand the given problem and to develop the

correct solution code from the given problem specification.

While correcting errors, students (except Jose) attempted to debug first without

even understanding how the solution code actually worked. In other words, they

worked on the debugging without clearly understanding the computer program.

Throughout the term, when they encountered errors, students typically worked

on syntax errors first. The frequent set of syntax errors encountered by students

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

104

involved (I) “symbol referencing errors” (such as misspelling) leading to undeclared

identifiers, undefined functions, and class name errors, (2) “output formatting errors”

such as improper field width and precision controls, (3) “improper keyboard input”

such as inserting non-numeric values for objects where a numeric value was expected.

This last kind of error often led to the termination of the program or infinite loop

situations. Throughout the term, Tim provided specific instructions on dealing with

syntax errors by using the compiler provided message and directions. To correct

syntax errors, students typically accessed the location of the syntax error by double

clicking on the compiler-provided error messages. Then they were able to examine

the area of code that generated the error message and corrected the errors sequentially.

For the most part, students were able to follow the directions provided by the compiler

and thus correct the syntax errors. However, at times students were confused by the

compiler-generated messages, its interpretation, and parse syntax errors. Parse errors

occurred, for example, if students placed a semicolon at the end of the class

declaration. In these situations, the complier directions reflected errors several lines

earlier than the actual error location. To deal with parse errors, students reviewed

their solution code and then referenced their textbook and class notes, searching for a

similar model code; then they followed the model code to correct the syntax o f their

solution code. However, the strategy to follow the model code did not always help to

correct the syntax errors and often led to the introduction of new (often erroneous)

code in their solution.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

105

During second week, Tim explained how to use the desk-check strategy to

correct syntax and logic errors. This strategy was meant to help the students deal with

syntax errors caused by misplacing code (for example, computation of average inside

a loop, unnecessary code and improper sequencing of C++ statements). Adam, Ann

and, Jose used this desk-check strategy by printing their solution code and then

correcting the code line-by-line in a sequential order. This strategy helped them to

detect and correct syntax errors.

At times students were unsuccessful in correcting their errors by using the

desk-check strategy. They then used a random trail-and-error approach to respond to

the syntax error problems. However, this trial-and-error strategy often led to the

introduction of unnecessary code, leading to more syntax errors. While this tnal-and-

error strategy was occasionally helpful to students, in many instances, they were

unable to explain how they reached the correct solution.

After correcting syntax errors, students considered logic errors. The most

frequent logic error sets included: (I) improper sequencing of variable objects placed

in a complex control structure (i.e. sequencing mistakes), (2) language construct errors

which created problems such as infinite loops, (3) misunderstanding operator

precedence, (4) using multiple object roles such as assigning two values to the same

object, (5) improperly naming objects, (6) using non-existent objects and operations

on the object such as misunderstanding the scope (global and local) o f objects, and (7)

misinterpreting the class declaration and implementation sections. To deal with the

logic errors, Adam, Ann, and Jose typically followed the desk-check strategy provided

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

106

in Tim’s instruction. This strategy frequently helped students detect and then correct

logic errors.

As the term progressed and close to the end of the term, class instruction

provided exposure to additional automated debugging tools such as the use of

VISUAL C++ debugger and the insertion of tracing statements (the print statements at

certain key locations in the solution code). With the use o f the debugger and the

tracing statements, students were able to execute their solution code one line at a time

and examine the status o f the values of the variables at key points. This allowed them

to divide the code in small pieces and work on each piece individually. In other

words, it offered students the opportunity to divide-and-solve their problems.

However, students also faced difficulties in understanding the VISUAL C+-1-

compiler-provided error messages/directions. These messages and directions were

oriented towards professional programmers and did not address the needs of

beginners. As a result, students were often confused and misunderstood the meanings

of the message and/or direction. These misunderstandings resulted in parse errors

and/or the introduction o f new errors.

Another noticeable feature was the improvement in students’ debugging

techniques. At the beginning of the term, students received instruction on following

and identifying compiler-provided error messages. During the second week, they

received instruction on the desk-checking technique where they could sequentially

examine their code for syntax and logic errors. And then towards the middle of the

term, they received instruction on how to use the VISUAL C++ debugger and the

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

107

insertion of print statements in the code. Students used these tools as soon as they

received instruction. These tools improved their error detection and correction

abilities.

Students did not improve in their planning and designing techniques to develop

the programming solutions since Tim did not provide specific instructions on

comprehensive program analysis and design. However, he did instruct students on

preliminary problem analysis such as identification of objects, methods and listing of

input, output and processing steps. As a result, students also limited themselves to

performing the preliminary problem analysis to complete the solution.

Analysis of students’ work also revealed difficulties among students when

learning some OOP and control structure concepts (selection and repetition). Students

had difficulties in understanding the exact definition of an object, the meaning of an

object, and how to efficiently access and name an object. Students also had

difficulties in understanding the OOP concept of constructor. They were unable to

distinguish between a C++ function and a constructor. They also listed attribute

names as the constructor arguments, and when the problem asked for a constructor,

students’ commonly provided a declaration of an object.

A separation of students became visible towards the end of the third week of

the term. Mel and Ann became overwhelmed during this time. They did not perform

as well as their male counterparts (Adam and Jose) in the class. Both females seemed

to have relatively more difficulties in sequencing program statements (in general) and

in complex control structure (in particular) than their male counterparts. For example,

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

108

one problem provided a for loop to rotate an angle from zero to n (pi) and print out

the values. Both Ann and Mel initialized code for the loop inside the body of the loop.

The males seemed more comfortable with the mechanical, analytical, and sequential

aspects of computer programming.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

109

CHAPTER V

DISCUSSIONS AND CONCLUSIONS

Introduction

The purpose of this exploratory study was to describe novice students’

learning of computer problem solving (CPS) in a beginning computer science (CS)

course with an introduction to object-oriented programming (OOP). Additionally, this

study attempted to connect the instruction with the knowledge students obtained about

OOP concepts and CPS strategies to support their learning of computer programming.

The institution where the study was conducted enrolled about 5000 students

from an ethnically diverse population in the western United States. One experienced

instructor and four students participated in the study. Pseudonyms were used to assure

confidentiality and anonymity.

This study began by selecting a college level introductory CS class. A

volunteer instructor Tim and four volunteer student participants (Adam, Ann, Mel and

Jose) participated in the study. All classroom documents used to teach the

introductory CS course were collected and analyzed. Classroom observations o f each

session documented the curriculum (in particular the CPS strategies and OOP

concepts), instructional strategies (activities, settings and classroom engagements),

and instructor-student interactions during instruction and his office hours. The goal of

the classroom observations was to provide a detailed description of how a beginning

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

110

CS course was taught. An initial, semi-structured (open-ended) interview was

conducted to establish Tim’s overall philosophy and approach for incorporating OOP

and CPS strategies in the introductory CS course. Informal discussions and semi­

structured interviews were conducted with him at the end of each class day to clarify

any questions from the classroom observation and to document the questions students

asked during his office hours. A final semi-structured, open-ended interview was

conducted to identify Tim’s perception of his students’ progress with CPS and OOP

programming concepts.

To gather student information, twice during the week informal student

interviews were conducted to encourage the students to explain their understanding of

the OOP concepts and CPS, their perceptions, their study practices, and their ability to

determine efficient and correct computer problem solutions. Two formal interviews

(one at the middle o f the term and a second close to the end) were used to gather

specific data about how students approached computer problems in terms of

programming and computer problem solving in an introductory computer science

course. During each interview, students were given one problem solution to debug

and one problem which asked them to develop an original computer solution.

The study was designed to answer the following questions:

(I) What instructional strategies characterized a beginning computer science

course with an introduction to object-oriented programming at the college level to

engage students in computer problem solving?

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

I l l

(2) How did novice students solve computer problems as a result of instruction

in a beginning computer science course with an introduction to object-oriented

programming at the college level?

This chapter includes discussion and interpretations of the findings

presented in Chapter IV in light of previous literature on teaching and learning in

computer science. It also includes the limitations o f the study, the implications of the

study and recommendations for future research.

Interpretation and Discussion of the Results

To address the first research question, this study investigated the instructional

strategies utilized in an introductory CS course. An analysis of the results found that

despite Tim’s initial intensions, the class was teacher-centered and emphasized the

syntactical details and with a focus on imperative aspects with an introduction to

object-oriented aspects of the C++ programming language. Tim’s lectures, labs,

homework, exams, and quizzes did not address the underlying programming logic,

such as the comprehensive problem analysis/design involved in computer

programming and OOP conceptual approaches. Tim did succeed in teaching some

introductory OOP and preliminary CPS strategies; however, for example, he did

provide instruction about conducting a limited preliminary problem analysis with a

focus on identifying and defining objects, methods and classes. He also recommended

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

112

that students use abstraction and think about the problem solutions first in English

language i.e. the program logic before attempting the solutions in C++ code.

However, Tim did not provide specific instruction to support students’ abstraction or

on how to think in “English first.”

The Computer Science Department at the university in this study adopted a

programming-first model as described in Academic Computing Machinery (ACM)

curriculum reports (ACM 1991, 2001). The programming-first model was aimed at

helping beginning computer science students develop the fundamental skills of

computer programming and computer problem solving (ACM, 1965, 1968, 1978,

1991, 2001).

The ACM (2001) curricula report recognized a variety o f implementations

strategies for the programming-first model (adapted from ACM, 2001: 3).

(1) Imperative-first strategy: This strategy focuses first “on the imperative

aspects o f the language: expressions, control structures, procedures and functions”

(ACM, 2001, p. 10).

(2) Objects-first strategy: This strategy initiates the introductory course in

computer science with object-oriented programming concepts. Control structures such

as selection and repetition are introduced within the context o f OOP at a later stage.

(3) Breadth-first strategy: This strategy introduces students to programming

along with sub-disciplines such as mathematics as well as computer programming. It

teaches programming language with the purpose o f providing a “holistic view” of the

computer science field.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

113

(4) Algorithms-first strategy: This strategy introduces students to computer

problem solving and/or algorithmic processes without using an executable

programming language; this strategy is used to teach programming with a major

emphasis on non-executable, language-independent algorithm development

techniques, such as writing pseudocode or developing program flowcharts.

(5) Functional-first strategy: This strategy introduces students to a

functional language, such as Scheme. Students are introduced to topics such as

procedural abstraction, data abstraction, algorithms, and problem-solving.

(6) Hardware-first strategy: This strategy initially introduces students to the

computer hardware concepts such as switching circuits, simple registers and then

programming in a high-level programming language such as Pascal, C.

Tim implemented a programming-first model using an “imperative-first”

implementation strategy. The results in this study concurred with the previous

research of McCauley and Manaris (2000) found that a majority of computer science

departments across the United States have adopted the programming-first model for

the introductory CS class.

Tim helped students to learn some o f the programming skills needed in C++

language. However, his emphasis on C++ syntax details may have lead students

involved in this study to approach computer programming without a comprehensive

plan and to develop solution in an “ad hoc process of trial and error” method (ACM,

2001, p. 10). Some students in Tim’s class lost interest and motivation for computer

programming as a result of his instructional approach, which emphasized the

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

114

syntactical details o f the C++ language. For example, Mel (Business major) felt

“overwhelmed” towards the end of the class and mentioned that taking Tim’s class

was “irrelevant” to her major. Students without prior computer programming in

general and females in particular were also placed at a disadvantage because of the

emphasis on the mechanistic details of programming constructs in Tim’s class. Tim

also agreed that some of the students were put at a disadvantage because of this focus

stating, “students especially Ann and Mel seemed uncomfortable with the mechanical

details involved in computer programming in this class. They wanted to understand

programming as a process. However, programming was more of a mechanical activity

in this class. Programming is actually more for the person who is mechanically-

oriented.”

The premier computing professional organizations such as the Academic

Computing Machinery (ACM), the Special Interest Group on Computer Science

Education (SIGCSE), the Institute of Electrical and Electronic Engineers, Computer

Society (IEEE/CS), the Computer Science Accreditation Commission (CSAC) and the

Computer Science Accreditation Board (CSAB) recommend that students be taught

problem-solving/programming skills, the development o f cognitive models and

effective analysis/design of computer problem solutions in the introductory computer

science course. In short, these associations assert that the curriculum and instruction

in an introductory computer science course should not only be focused on sets o f

syntax rules but should also help students develop the necessary cognitive thinking

skills to deal with complex tasks such as CPS and computer programming. Research

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

115

(Carter, 1992) supports that introductory CS classes taught with an emphasis on

teaching CPS improves programming performance among students.

In addition, Tim’s instruction did not provide a comprehensive exposure and

practice with object-oriented programming. The analysis o f the results revealed that

during the five weeks of instruction, Tim spent almost four weeks focusing on the

imperative aspects with just a touch of object-oriented aspects (such as cin and cout)

of the C++ language. Only the second week and part of the fourth week was used to

emphasize the object-oriented aspects of the C++ language. ACM (2001) strongly

recommends a comprehensive exposure to object-orientation in an introductory course

indicating object-orientation as “central” to the introductory computer science

curriculum. Furthermore, both CSAB and CSAC notified the computer science

education community that object-oriented topics would have significant emphasis in

the Advanced Placement curriculum (AP 2000).

Close to the end of the term, students in Tim’s class showed a constant struggle

in their learning due to shifts in the way they were taught to approach programming

problems, i.e. from imperative to object-oriented and vise versa. While students were

exposed to the imperative aspect during the first week, the second week of the class

emphasized the object-oriented aspect of C++. The third, fourth and the fifth week

focused again on the imperative aspect while part o f the fourth week focused on the

object-oriented aspect of C++ language. According to Ross (1997), little or a late

introduction to object-orientation can be counterproductive since students exposed

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

116

earlier to imperative programming practices may have to “unlearn” their procedural

thinking in order to leam object-oriented programming.

One problem that learners o f OOP run into is that of false understanding. This
results in programmers thinking an approach makes a lot of sense, liking it,
adopting it, and then having to back away from it. It takes time to abandon
what seemed like a good idea. (Ross, 1997, p.48)

Some of Tim’s planned views about teaching the introductory course were not

noticeable in his instructional practices. For example, Tim stated that he would apply

a student-centered approach to his instruction and said that he believed in presenting

opportunities for students to leam rather than telling them how to leam. He preferred

"self discovery of knowledge and the light bulb theory.” He stated that he would

encourage student participation and believed that classroom interactions, assignments

etc. would help him understand how students were learning. However, Tim’s

instruction was primarily teacher-centered, lecture-oriented, and contained little

student participation and discussion during the lectures.

Before the course began, Tim stated that he would not emphasize O-*- syntax

during his instruction. However, his instructional approach was mainly syntax-based.

The syntax-based approach did not appear to provide a facilitation of the cognitive

models and/or skills required to be a successful programmer since programming

activity requires high-order thinking while solving problems (ACM, 2001).

Tim viewed teaching problem solving as “time consuming” and “unfair”

because students would have been asked to “do creative work in a stressful situation.”

As a result, Tim’s instructional strategies appeared to exclude core higher order

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

117

thinking skills, which lead to well-rounded computer programming experiences.

Because of this, students depended mostly on reproduction (copying existing code)

rather than a combination of reproduction and a production (creating new from an

existing) thinking pattern. Overall, Tim’s instruction seemed to have a profound

effect on student’s CPS and OOP abilities.

The second research question o f this study addressed the strategies used by

students to solve computer problems in a beginning course in computer science with

an introduction to object-oriented programming. Students’ problem-solving

approaches lacked the use of a comprehensive written plan/design throughout the

term. Students viewed the solution to the given problems as a collection of the parts

of C++ statements rather than with a comprehensive, integrated view of the problem.

They seemed somewhat familiar with C++ syntax, but at the same time they were

uncomfortable and at several instances unsuccessful in developing complete solutions

in C++ syntax from scratch. Their strategies typically followed a specific process.

First, students attempted to understand the problem by reading and underlining

keywords or sentences. Second, they performed a preliminary problem analysis by

identifying objects, methods {private and public), class, attributes, as well as listing of

input, processing steps and output. Throughout the term, Tim encouraged and

demonstrated the identification of objects, and methods. Third, they used examples

and model code from the textbook and class notes, analogies from their real-life

experiences, prior learning experiences from other educational domains such as

mathematics/algebra problem-solving and the programming knowledge/concepts

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

118

attained through class instruction. During this third step, the students typically

generated a solution code. Their strategy to code- first without comprehensive

planning often failed to lead them to an efficient solution. As a result, they resorted to

a fourth strategy: trial-and-error. After compiling the solution code, students often

encountered syntax and logic errors. In the debugging process, students began the

process without understanding how the solution code actually worked. To correct the

syntax errors, they accessed the location of the syntax error by double clicking on the

compiler-provided error messages and sequentially corrected the errors. Students also

used a desk-check strategy to correct syntax and logic errors by printing their solution

code and then examining the code in a sequential order line-by-line. When this desk-

checking strategy was not successful, they resorted to trial-and-error. Correction of

syntax errors was followed by the correction of logic errors. Students used the desk-

checking strategy, the automated debugging tools provided by the VISUAL C++

debugger, and inserted tracing statements at certain key locations in the solution code.

With the use o f the debugger and the tracing statements, students efficiently executed

their solution code one line at a time and examined the status of the values of the

variables at key points.

In short, students typically approached the problems without developing a

comprehensive written plan/design. Instead, they accepted the given problem and

began to code. This code-first strategy engaged students in thinking about their

problem solutions in terms of C++ code. This strategy has also been reported by other

investigators (Carter, 1991; Lee, Pennington & Redher, 1995; Rist, 1995).

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

119

Another interesting result of the study was that the students’ learning processes

seemed to follow the gradual learning model (cited in Nelson, Irwin & Monarchi,

1997, proposed by Anderson and colleagues, 1983, 1987) built from a computer

programming perspective. According to this model, a beginner gains programming

knowledge in three stages. In the first stage, a declarative knowledge is developed as

the beginner attempts to leam the basic definitions, methods, and skill performance

needed in programming. In the second stage, beginners gain a procedural knowledge

by using examples extensively to apply the declarative knowledge in the problem­

solving process. During the third stage, the beginning student gains the experience

and procedural knowledge needed to handle more challenging problem solving

(Nelson, Irwin & Monarchi, 97). Analysis of the students’ knowledge in this study

revealed similar stages of knowledge gain. In the beginning, they learned the

declarative knowledge involved in the C++ programming language. Then they used

model codes, examples, and analogous solutions from their textbook and class notes.

Finally, they practiced their new skills by completing written homework and

programming assignments thus attaining the necessary procedural knowledge.

While students’ learning processes allowed them to gain some of the

procedural knowledge to solve programming problems, their ability to design and

develop correct program solutions remained quite limited. Evidence from this study

suggests that the reason is linked to their inability to use effective problem-solving

heuristics and/or strategies.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

120

Brooks (1982) developed a model of cognitive processes in computer

programming. According to his model, programmers go through three major steps to

solve a given problem: They (1) work to understand the problem; (2) find a method

(algorithm); and (3) convert the method to a solution code. The students involved in

this study attempted to understand the problem by underlining key words and/or

sentences in the problem specification. However, they did not identify an algorithm

and its conversion to an actual code. Rather, they performed an incomplete

preliminary problem analysis and followed examples to generate code. Eventually,

they resorted to trial-and-error correction of the solution code.

Much discussion in the literature (Choi, 1991; Lee & Thompson, 1997; Mains,

1997; Knox-Quinn, 1995; Willis, 1999) has considered whether computer

programming helps to develop students’ general problem-solving skills. While this

study did not attempt to study the question of general problem-solving abilities, the

research question did focus on understanding students’ computer problem solving

processes. In general, the processes the students used included: (1) understanding the

problem by reading and underlining and/or identifying keywords; (2) searching for the

analogous or model problem solutions from their textbook and class notes or parts of

an analogous solution code in the hopes o f a correct solution.

Similarities of this process were considered in relationship to ideas promoted

by Polya (1988). Polya described a four stage model where a problem solver:

(1) Attempts to understand the problem. He or she looks at what is known

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

121

and unknown, analyze the problem’s conditions and situation, and then identifies the

key words and data in the given problem.

(2) Devises a plan by finding a connection between the data and the

unknown in the given problem. Here, the problem solver looks at analogous solutions

and uses some portions of the analogous solution to solve the given problem.

(3) Carries out the plan and checks that each step is correct.

(4) Examines the problem solution by looking back.

The process students used in this study was somewhat analogous to the first

two stages of Polya’s problem-solving model. However, they did not prepare

comprehensive written plans/designs nor did their processes mirror ideas in the third

and fourth stages of Polya’s model. With more computer science course- work and

instruction, their patterns may become more aligned with Polya’s model. Perhaps a

more efficient and progressive problem-solving model develops with more problem­

solving experience.

Another noteworthy aspect that emerged during the data analysis was the kind

o f thinking students exhibited in this study. Lowen (1982) mentioned two kinds of

thinking modes and/or thinkers in computer programming, i.e. analytical and intuitive.

Analytical thinkers are well planned, detailed-oriented, and sequential (cited in Dann,

1990 proposed by Lowen, 1982). On the other hand, intuitive thinkers are gestalt and

experimental. As in Lowen’s (1982) findings, students involved in this study

exhibited a “dichotomy of these two modes o f thinking. However, one mode was

dominant over the other.” Adam, Ann and Mel seemed to be more intuitive thinkers.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

122

They did not exhibit a well-planned, methodical, and detailed- oriented thinking

pattern. However, Jose exhibited more of an analytical thinking pattern. During his

CPS and OOP processes, he paid attention to details and methodically solved given

computer problems. O f the students involved in this study, Jose was the most

successful problem solver earning an “A” in the course. During the interviews and

observations, Jose displayed confidence and comfort while engaged in CPS, which

perhaps was due to his analytical thinking style. In addition, as mentioned earlier, Tim

primarily focused on the imperative aspects of the C++ programming language during

his instruction. This could have favored Jose’s thinking style. As Dann (1990) stated,

“The underlying conceptual principles o f imperative programming can be seen to

richly accommodate the analytic, well-ordered, step-by-step, procedural cognitive

style.” Consequently, students (Adam, Ann and Mel) who were less analytical in their

thought processes were less successful in the class.

An important question in this study thus becomes whether Tim “adequately

prepared” his students to deal with the “cognitively-challenging” task of computer

programming, a task that requires the use of productive and reproductive thought

patterns. Tim’s instruction typically involved students in a drill-and-practice

regiment. He encouraged students to use example code to solve the computer

problems. As a result, students depended on examples in their textbook and class

notes to solve their interview, homework, quiz, etc. while developing computer

solutions. In other words, Tim’s instruction focused students on reproductive

thinking.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

123

In addition, the findings of this study supported Dann’s (1990) identification of

problems some students face while learning OOP. According to Dann, “First, the

student may not be adequately prepared, i.e. the cognitive skills required in the

programming process. Second, the student may possess a cognitive style which is

unsuited for the imposed language and methodology” (1990, p. 100). “Inadequate

preparation” in the cognitive skills such as productive and high-order thinking

required for computer programming combined with incompatible thinking and

learning styles with the C++ language appeared to limit students’ understanding of

CPS processes and computer programming (Dann, 1990). As a result, students’ in this

study frequently encountered syntax and logic errors while developing their computer

solutions. During the debugging and the CPS process, students in this study often

depended, on a trial-and-error strategy to correct their errors (i.e. syntax and logic

errors). However, the use of a trial-and-error strategy became more harmful when

students applied it while working on logical errors.

The instructor in this study focused on the imperative aspects o f the C++

programming language. This approach had a profound effect on students’ thinking

and problem-solving approaches while engaged in programming using C++ language.

It required them to think sequentially, mechanically, analytically, and procedurally.

According to Sutter (2002), the thinking process involved in C++ programming

language’s imperative aspects requires a store, fetch, and execute cycle similar to the

mechanical aspects o f computer hardware. Students in this study had to think in an

analytical and sequential manner to solve problems, making it difficult for those who

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

124

think more intuitively. The analysis o f student results revealed that students in general

had difficulties in proper sequencing o f the statements in control structures such as

loop. However, the females (Ann and Mel) had more difficulties as compared to

males (Adam and Jose) in understanding and correctly sequencing statements in

complex control structures. For example, Mel and Ann had similar problems with

nested loops and particularly with the proper sequencing of statements. However,

Adam and Jose performed better with nested loops and sequencing. Instead of being

able to view the computer as a machine, Mel and Ann viewed it as a thinking process

similar to what is used in mathematics or algebra. On the other hand, the males

seemed to be more comfortable with the mechanical aspects of computers and

computer programming. In other words, females in this study seemed to be less

mechanically-oriented than the males. An interesting note, however, is that the

students in general, and females in particular, performed better on the declarative

aspects of C++ programming language where no control was involved. Other research

(Colley, 1995; McClelland, 2001) has also reported subtle gender differences in

approach and understanding of computers and programming.

Limitations of the study

Limitations of the study, including sample size, the researcher, the

methodology, and the programming language and analysis o f data, make it difficult to

widely generalize the findings o f the study. After all, only one instructor, one course

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

125

and four students from a limited geographical area were included in the study. As a

result, the representativeness of the sample was limited. However, the sample was

appropriate for the research design and method by providing an opportunity to study

the participants in greater depth. While generalization of the results is not appropriate,

the study did identify potential factors that affect introductory computer science

problem-solving which should be studied in more detail using a quantitative

methodology or perhaps a combination of using qualitative and quantitative

approaches.

In addition to the limited sample size of the study, its qualitative design may

have presented a bias since the researcher was the primary investigator and data

collector. As a result, the researcher’s background and/or unintentional biases could

have led to the contamination o f the data and an unintentional bias in its interpretation

and/or analysis. Precautions were taken to minimize the researcher’s biases. On a

daily basis, for example, the researcher maintained a journal to record classroom

observations, interviews with the instructor and students, and reflections on classroom

and research activities. The journal also included thoughts, questions, reactions,

interpretations and insights during the observations. Through this detailed reflection

and analysis the researcher worked to identify potential sources of biases and

misinterpretations.

Course duration was also a limitation in this study. Typically, instruction of an

introductory course in computer science involves an 11 to 16 week term, whereas the

course involved in this study was only five weeks. One o f the significant factors that

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

126

influenced Tim’s instructional approaches and student’s learning of the CPS and OOP

in the introductory CS course was time. Tim and students were under tremendous

constraints to complete the required course material in a shortened time period.

Implications for Computer Science Education

Students in this study faced challenges to constantly adjust their individual

and/or personal thinking and learning styles in accordance with the imposed

methodologies o f the C++ programming language. Tim’s teaching approach imposed

an analytical thinking and learning style to accommodate the imperative aspects of the

C++ programming language. As a result, those who adapted well (Jose) to the

analytical aspects (i.e. step-by-step, detailed-oriented aspects of the C++ programming

language) were more successful than others (Adam, Ann and Mel). Instructors of

introductory computer science classes need to be aware of, and sensitive to, different

student thinking and learning approaches to computer programming.

The use of the C++ programming language in this study also revealed that C++

is not a student-friendly programming language for beginning computer science

students. The students in this study generally felt that the C++ language was a

difficult language to leam. Adam called C-*-+ a “cryptic” language, and the instructor

called C++ an “awful” programming language for the beginning students. As

mentioned earlier, C++, if taught with the imperative or “object-first” implementation

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

127

strategy, could favor a particular thinking and learning approaches. For this study, the

use of C++ programming language imposed the analytical approach/strategy to solve

the given problems. Computer science departments need to consider this problem and

select a computer programming language that is more student-friendly for beginners

and also can accommodate diverse student thinking and learning approaches while at

the same time helping students develop an acceptable foundation in computer problem

solving.

Students involved in this study typically solved problems without using a

comprehensive problem analysis/design and at times faced difficulties to develop the

solution code. The ACM (2001) curriculum report recommends the teaching and

learning of effective problem analysis/design skills among introductory computer

science students. CS instruction at the introductory level must include instruction

concerning the underlying computer logic to support skills in a comprehensive and

effective analysis and design.

In this study, Tim’s instruction did not provide a comprehensive exposure of

the object-oriented concepts. Computer associations such as, ACM, IEEE, CSAS and

CSAB, on the other hand, highly recommend an early and comprehensive exposure to

object-oriented concepts for introductory computer science students. Tim’s

instruction also switched between the imperative and object-oriented aspects of C++

language. Previous research (Ross, 1997) has shown that exchange between the

paradigms during instruction is counterproductive. A major concern noted in Ross’s

research was the effort students had to extend to “unlearn” the other methodology

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

128

(imperative) prior to their journey in learning object-orientation. Computer science

departments therefore need to consider implementing an “object-first” strategy for

their introductory computer science courses. This kind of strategy may help students

in their transition towards advanced computer science courses such as data structures.

Adoption of VISUAL C++, a commercial-based and professionally/expert

oriented compiler, by the CS department where the study was conducted, was found to

have consequences for both teaching and learning in the introductory course in

computer science. The results of this study indicated that students initially had

difficulties dealing with the VISUAL C++ compiler and its error messages. If the goal

of a beginning computer programming course is to teach students the basics of an

OOP language, a complier should be selected that takes into account the needs of

beginning students and that generates information understandable by beginners.

Recommendations for Future Research

In this study, the teaching and learning involved the use of C++, a hybrid

programming language. C++ allows both imperative and object-oriented approaches.

Tim adopted a programming-first model with a focus on the imperative aspect with an

introduction to the object-oriented aspect o f C++. McCauley and Manaris (2000)

reported an upward trend towards a complete adoption o f object-oriented approach in

the CS departments across the United States. The ACM (2001), CSAB and CSAC

(2000) and SIGCSE (2002) recommended a focus on object-oriented concepts. Future

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

129

research is needed to identify how students approach CPS and OOP processes in other

object-oriented languages (such as JAVA) and if their CPS and OOP processes

develop more naturally.

A small sample within a limited geographical area was utilized in this study.

For the current study, the sample was appropriate since the study provided results that

can help CS educators begin to understand how students solve computer problems in

an OOP environment. For future research, a more diverse geographical area and a

more diverse sample could help to identify the approaches students might use in an

object-oriented environment.

Students in the current study were not interviewed collaboratively since the

research questions were focused on the individual student. Real life situations,

however, require computer programmers to often work collaboratively in projects thus

solving problems in a collaborative manner. Hakkinen (2001) reported a substantial

body of research demonstrating the benefits of collaborative learning. Therefore, it is

recommended that research on collaborative CPS learning should be completed,

allowing students to work in groups o f two or more; interviews should be conducted

on those students involved in collaborative learning o f CPS in an OOP environment.

This approach can provide more understanding of effective computer problem solving

skills in a collaborative environment.

A variety of qualitative research techniques (e.g., classroom observations,

interviews, researchers’ journal and classroom documents) were employed to collect

and analyze the data. The purpose of employing multiple sources was to strengthen

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

130

the validity of data analyses, to sustain assertions, and to assure viability o f the data

collected (Lincoln & Guba, 1985; Patton, 2002). Therefore, it is recommended that

future research in CPS and OOP should also involve multiple resources. In addition to

the kinds of resources used in this study, researchers should consider adding the

element of personal journals written by the subjects involved. These reflections will

help enrich the data and provide a more in-depth perspective of the subjects involved.

The instructor and students in this study were under time constraints to teach

and leam CPS and OOP in a short period. This time limitation presented a burden in

the teaching and learning of CPS and OOP. The instructor thought that teaching CPS

would be a time consuming process and, in many instances, students resorted to

rushing to identify a solution by any means, including copying from examples without

using the underlying CPS processes. Future research is needed where multiple

approaches to instructional formats such as a longer time periods are used. Perhaps,

an open entry and exit instructional formats would allow time for instructors and

students involved in the study to focus on teaching and learning of the CPS and OOP

processes.

Students in this study depended on examples to solve problems. They used

examples of solution code (similar to the problem given) from their textbook and class

notes. There were several instances where using examples did help guide solutions.

However, at other times students tended to copy the examples without understanding

them. Future research is needed to identify examples that support introductory

computer science students in learning the CPS and OOP.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

131

The analysis of the results in this study indicated that students in general, and

females in particular, had difficulties using the C++ programming language’s

imperative approach. Females in this study were relatively less mechanically-oriented

than males. It is recommended that future research in CPS and OOP explore gender

issues in depth and study how gender plays a role in learning other OOP languages.

Future studies could also utilize information from the gender related studies (Charlton

& Birkett, 1998; Dryburgh, 2000; Kadijevich, 2000).

The instructor in this study planned to teach the CPS with a focus on OOP.

However, there was an apparent disconnect in his planned views and his actual

implementation o f the instructional plans. Future research needs to focus on how CS

departments and instructors’ state and/or plan their theory of pedagogy as compared to

their actual pedagogy implemented.

The computer science accreditation board CSAB (2002) reported a continual

popularity and adoption of OOP languages among CS departments across the United

States. However, in spite o f the popularity, change, and adoption of OOP among CS

departments (McCauley & Manaris, 2000), and the resulting impact this adoption of

OOP has or will have on a significant number o f beginning computer science students,

relatively little scientific evidence exists about learning CS with OOP languages. This

study identified potential student CPS and OOP learning processes and factors using a

qualitative approach. Future research should continually investigate the factors

effecting introductory CS problem-solving using a quantitative methodology or

perhaps a combination of using qualitative and quantitative approaches.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

132

REFERENCES

Academic Computing Machinery. (1965). An undergraduate program in computer
science preliminary recommendations. Communications o f the ACM , 8(9), 543-
552.

Academic Computing Machinery. (1968). Curriculum '68: Recommendations for
the undergraduate program in computer science. Communications o f the ACM,
11(3), 151-197.

Academic Computing Machinery. (1978). Curriculum '78: Recommendations for
the undergraduate program in computer science. Communications o f the ACM,
22(3), 147-166.

Academic Computing Machinery. (1991). Curriculum ’91: Recommendations for
the undergraduate program in computer science. Communications o f the ACM,
43(2), 101-134.

Academic Computing Machinery. (2001). An undergraduate program in computer
science preliminary recommendations [online], http:www.acm.org/sigcse/2001.

Advanced Placement Program. (2003). Introduction o f Java in 2003-2004 [online].
http:www.collegeboard.org/aD/computer-science.

Ahmed, M. Aqeel. (1992). Student Thought Processes While Engaged in Computer
Programing. Dissertation. Oregon State University.

Allwood, M.C., Bjorhag, C. (1990). N ovices’ debugging when programming in
Pascal. International Journal o f Man-Machine Studies, 33(6), 707-724.

American Association o f Colleges. (2002). http://www.aacu-edu.org.

Anderson, J. R. (1983). The architecture o f cognition. Cambridge, MA; Harvard
University press.

Anderson, J. R. (1987). Skill acquisition: compilation o f weak-method problem
solutions. Psychological Reviews, 94, 192-210.

Baldwin, L. P., Macredie, D. R. (1999). Education and Information Technologies.
4(2), 167-179.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

http://www.acm.org/sigcse/2001
http://www.collegeboard.org/aD/computer-science
http://www.aacu-edu.org

www.manaraa.com

133

Brooks, R. (1983). Towards a theory of cognitive processes in computer
programming. International Journal o f Man-Machine Studies, 18 (2), 543-554.

Byme, D. J., & Moore, J. L. (1997). A comparison between the recommendation
of computing curriculum 1991 and the views of software development
managers in Ireland. Computers Education, 28(3), 145-154.

Campbell, P. F„ & McCabe, G. P. (1984). Predicting the success o f freshman in a
computer science major. Communications o f the ACM, 27(11), 1108-1113.

Carter, J. H. (1991). Comparison of a Problem Solving approach to computer
programming curriculum with a syntax-oriented approach (programming).
Dissertation. The University o f Texas at Austin.

Charlton, J. P., & Birkett. P. E. (1998). Pyshological Characteristics of Students
Taking Programming-Oriented and Applications-Oriented Computing Courses.
Journal o f Educational Computing Research, 18(2), 163-182.

Choi, S.W.(1991). Effect of Pascal and Fortran programming instruction on the
problem solving cognitive ability in formal operational stage students.
Dissertation. Texas Tech University. Lubbock.

Computer Science Accreditation Commission/Computing Sciences Accreditation
Board: (2003). Criteria for accrediting programs in computer science in the
United States, [online] http://www.csab.org/.

Computer Science Accreditation Board. (2003). Criteria for accrediting programs
in computer science in the United States. [online] http://www.csab.org/.

Computer Science Accreditation Board (2003). [online] http://www.csab.org/.

Colley, A. (1995). Gender Effects in the Stereotyping of Those with Different
Kinds of Computing Experience. Journal o f Educational Computing Research.
21(1), 19-27.

Corritore, L.C., Wiedenbeck, S. (1999). Mental representations of expert
procedural and object-oriented programmers in a software maintenance task.
International Journal o f Human-Computer Studies, 50, 61 -83.

Dann, P. W. (1990). Cognitive aspects o f programming, programming paradigms,
and programming Instruction. Master Thesis. State University of New York
Institute of Technology. Utica.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

http://www.csab.org/
http://www.csab.org/
http://www.csab.org/

www.manaraa.com

134

Denning, J. P. (1989). Computing as a discipline. Communications o f the ACM,
32(1), 90-132.

Dey, S. & Mand, L. R. (1986). Effects of mathematics preparation and prior
language exposure on received performance in introductory computer science
courses. SIGCSE Bulletin, 18(1), 144-148.

Dryburgh, H. (2000). Underrespresentation o f Girls and Women in Computer
Science.Classification of 1990s Research. Journal o f Educational Computing
Research, 23(2), 181-202.

Ebrahimi, A. (1994). Novice programmer errors: Language constructs and plan
composition. International Journal o f Human-Computer Studies, 41, 457-480.

Educational Testing Services. (2003). [online], http://www.ets.org.

Goldenson, D. (1996). IVhy teach computer programming? Some evidence about
generalization and transfer. Proceeding of National Educational Computing
Conference ‘96. 271-276.

Greer, J. (1986). High school experience and university achievement in computer
science. AEDS Journal, 19(2-3), 216-225.

Hakkinen, P. (2001). Rethinking Collaborative Learning. European Society for
Developmental Psychology, [online]
http://www.devpsy.lboro.ac.uk/eurodev/reviews /index.htm.

Kadijevich, D. (2000). Gender Differences in Computer Attitute among Ninth-Grade
Students. Journal o f Educational Computing Research, 22(2), 145-154.

Kaplan, C. A., & Simon, H. A. (1990). In search of insight. Cognitive Psychology,
22, 374-419.

Knox-Quinn, C. (1995). Student construction of expert systems in the classroom.
Journal o f Educational Computing Research, 12(3), 243-262.

Kurland, D. M ., Pea, R.D., Mawby, R., & Pea, D. R. (1986). A study of the
development of programming ability and thinking skills in high school students.
Journal o f Educational Computing Research, 2, 429-458.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

http://www.ets.org
http://www.devpsy.lboro.ac.uk/eurodev/reviews

www.manaraa.com

135

Lederman, N. G. & Chang, H. (1997). An international investigation of preservice
teacher’s pedagogical and subject matter knowledge structures. National
Science Council Part D: Mathematics, Science, and Technology Education.
7(2), 110-122.

Lee, C. M.,Thompson, A. (1997). Guided instruction in logo programming and the
development of cognitive monitoring strategies among colleges students.
Journal o f Educational Computing Research, 16(2), 125-144.

Lee, A., Pennington, N. (1994). The effects of paradigm on cognitive activities in
design. International Journal o f Human-Computer Studies, 40, 577-601.

Lincoln, Y. & Guba, E. (1985). Naturalistic inquiry. Beverly Hills: Sage
Publications, Inc.

Lowen, W. (1982). Dichotomies o f the Mind. New York: John Wiley.

Mains,G.M. (1997). The effects of learning a programming language on logical
thinking skills. Journal o f Educational Research, 4(3), 185-202.

Mayer, R. E. (1983). Thinking, Program Solving, Cognition. New York: W. H.
Freeman and Co.

McCauley, R.A., & Manaris, B.Z. (2000). Comprehensive report on the 1995
survey of departments offering CSAC/CSAB-accredited degree programs. ACM
SICCSE Bulletin, 32(2), 144-148.

McClelland, M. (2001). Closing the IT Gap for Race and Gender. Journal o f
Educational Computing Research. 25(1), 5-15.

Nelson J., Irwin G., & Monarchi, E. D. (1997). Journeys up the mountain: Different
paths to learning object-oriented programming, Accting., Mgmt & Info. Tech.,
7(2), 53-85.

Patton, M. (2002). Qualitative Research and Evaluation Methods, (3rd. ed.).
Thousand Oaks: Sage Publications, Inc.

Pennington, N., Lee, Y. A., Rehder, B. (1995). Cognitive activities and levels of
abstraction in procedural and object-oriented design. Human-Computer
Interaction, 10, 171-226.

Palumbo, D. B. (1990). Programming language/problem solving research: A
review of relevant issues. Review o f Education Research, 60. 65-89.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

136

Polya, G. (1988;. How to solve it (2nd ed). Princeton, NJ: Princeton University
Press.

Reed, W. M. & Palumbo, D. B. (1992). The effect of basic instruction on problem
solving skills over an extended period of time, Journal o f Educational
Computing Research, 8(3), 311-325.

Ross, M. J. (1997). Instructional design paradigm: Is object-oriented design next?
Performance Improvement Quarterly, 9(3), 23-31.

Taylor, H. G., & Mounfield, L. (1991). An analysis of success factors in college
computer science: High school methodology is a key element. Journal o f
Research on Computing in Education, 24(2), 240-245.

Tucker, A. B., & Wagner, P. (1994). New Directions in the introductory computer
science curriculum. SIGCSE Bulletin, 26(1), 36-39.

Salataci, R., & Akyel, A. (2002). Possible Effects o f Strategy Instruction on LI
and L2 Reading. Reading in a Foreign Language, 14(1), 13-19.

Shackelford L. R., & Badre N. A. (1993). Why can’t smart students solve simple
programming problems? International Journal o f Man Machine Studies, 38,
985-997.

Shneiderman, B, (1976). Exploratory experiments in programmer behavior.
Journal o f Computer Information Science. 5(2), 123-134.

Singh, J. K.., & Zwimer. W. (1996). Towards a theoretical framework of problem
solving within logo programming environment. Journal o f Research on
Computing in Education, 29(1), 68-95.

Stroustrup, B. (2001). Speaking C++ As A Native. Advanced Computing and
Analysis Techniques in Physics Research: VII International Workshop.
American Institute o f Physics. October 2001.

Sutter, H. (2002). The new C++. C/C++ Users Journal - Advanced Solutions for
C/C++programmers. 3(1), 1-6.

Willis, M. J. (1999). Using computer programming to teach problem solving and
logic skills: The impact of object-oriented languages. Master thesis. The
University of Houston. Clear Lake.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

137

APPENDICES

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

138

APPENDIX A

Student Informed Consent Form

D ear__ ,

I am a graduate student at the Oregon State University. I am conducting
research for my thesis. This research will investigate the strategies utilized by
students while engaged in computer problem solving (CPS) and object-oriented
programming (OOP). You are invited to participate in this study.

Confidentiality will be maintained by using pseudonyms and by not linking or
showing your name to the information in this study. All data will be in a secured
place. Data will only be accessed by me and the thesis advisor. At the conclusion o f
the study all the data will be destroyed.

Participation in the study will not effect your grade in any way. Participation is
strictly voluntary. You may withdraw at any time without any penalty or loss o f
benefits to which you may be otherwise entitled. You may choose to selectively not to
answer any particular questions or any question at all.

You will be asked to interact with the researcher twice a week during informal
interviews approximately 30-45 minutes and to participate in two (around the middle
and close to the end o f the term) computer problem solving interviews o f
approximately 2 hours each. You are asked to allow the researcher to observe the
class/take notes, access your graded assignments, tests and your mathematics
placement scores. For questions about personal rights as participants you may contact
IRB coordinator at (541)737-3437 or via e-mail at IRB@orst.edu

/ have read and understand the consent form . I am at least 18 years o f age or
older and I agree to participate in this research project in the manner described. I
understand the general intent o f the study, the type o f data collected, and the time
commitments involved in the study. I give my informed and voluntary consent to
participate in this study. I understand that I will receive a signed copy o f this consent
form .

Student Signature/Name Date

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

mailto:IRB@orst.edu

www.manaraa.com

139

APPENDIX B

Instructor Informed Consent Form

D ear_____________________________________ :

I am a graduate student at Oregon State University. I am conducting research
for my thesis. This research will investigate the strategies utilized in object-oriented
programming (OOP) and computer problem solving at the introductory college level
class. You are invited to participate in this study.

Your name will not be linked or shown to the information in this study.
Confidentiality will be maintained through coding. All data will be in a secured place.
Data will only be accessed by me and the thesis advisor. Pseudonyms will be used for
the educational institutions and the subjects when reporting the results o f the research.
No information will be used for any class evaluation purposes. At the conclusion of
the study all data will be destroyed.

You will be asked to: (1) allow observation o f your classes throughout the
academic term; (2) participate in an initial interview approximately 1 hour prior to the
beginning o f the term; (3) daily informal interviews approximately 30-45 minutes and
a final interview approximately an hour long; (4) provide classroom documents; and
(5) assist in the design o f computer problems and OOP solutions.

Participation is strictly voluntary. You may withdraw at any time without any
penalty or loss o f benefits to which you may be otherwise entitled. You may choose
to selectively not answer certain questions or any questions at all. For questions about
personal rights as participants you may contact IRB coordinator at (541)737-3437 or
via e-mail at lRB@orst.edu

I have read and understand the consent form . I am at least 18 years o f age or
older and I agree to participate in this research project in the manner described. I
understand the general intent o f the study, the type o f data collected, and the time
commitments involved in the study. I give m y informed and voluntary consent to
participate in this study. I understand that / will receive a signed copy o f this consent
form .

Instructor’s Signature Date

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

mailto:lRB@orst.edu

www.manaraa.com

140

APPENDIX C

Student Background Information

Please complete the following information as directed. Your cooperation is greatly
appreciated.

1. N am e__

2. Address___

3. Phone (______)__________________

4. E -m ail______________________________

5. M ajor___________________ M inor___________________ U ndecided_________

6. Gender (please circle) Female Male

7. Academic Level (please circle) Freshman Sophomore Junior Senior
Graduate

Other (please w rite)___________________________________

8. Are you learning computer programming for the first time? (please circle one)

YES NO

9. What computer classes you have taken so far? Please list. You may include classes
taken in high school, and/or at the college level.

10. Other computer training received

□ workshops
□ self-taught
□ high school courses
□ other (Please describe in the space provided)

R ep ro d u ced with p erm issio n o f th e copyrigh t ow ner. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

141

11. Work experience in computers or computer related field. If none, please state so.

12. Please describe your understanding o f computer programming and problem ­
solving process? If you need additional space, please feel free to attach an extra sheet.

Computer Programming Process

Problem-solving process

Thank you for your participation!

R ep ro d u ced with p erm iss io n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

142

APPENDIX D

Instructor Interview Protocols

Initial Interview

1. Please tell me about yourself and your professional background in general
and in teaching Computer Science in particular.

2. How long you have been teaching the introductory computer science
classes?

3. How are you planning i.e. general overall strategy to teach the introductory
computer science class?

4. How would you characterize your instructional strategies in the introductory
OOP class?

5. What is your understanding o f the complete problem-solving process in
OOP?

6. What OOP concepts and CPS strategies you are planning to stress and why?

7. What instructional strategies are you planning to apply to teach computer
problem solving/OOP concepts and why?

8. What will be the most difficult OOP concept(s) to teach in this course and
to engage students in CPS and why? And how you are planning to present it?

9. What will be the easiest OOP concept(s) to teach in this course and to
engage students in CPS and why? And how your are planning to present it?

10. Please tell me about your perception on how students will be learning CPS
and applying it in the OOP environment?

11. What sort o f outcomes and engagements you envision from teaching
students the CPS and OOP concepts?

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

143

Informal Interviews

1. How do you feel about students progress in the class?

2. What are your plans in terms o f teaching OOP concepts and CPS strategies
and assigning the homework?

3. Other questions will be based on the issues/questions raised during the
classroom observations and office hour contacts.

Final Interview

1. During the initial interview, I had asked you about your initial planning to teach this
class. How do you feel about your overall plans for this class at the end?

2. During the initial interview you envisioned certain outcomes and engagements from
teaching students the CPS and OOP concepts. Did you meet your expectations?

3. During the initial interview you gave me your initial perception o f student learning.
Please tell me your final overall perception o f the progress o f students learning CPS in
the OOP environment.

4. During the initial interview you have given me your initial characterization o f the
class. Please give me your final characterization o f the introductory CS class.

5. During the course o f instruction you stressed [certain OOP concept(s)] more
frequently than others, and why?

6. During the course o f instruction you stressed [certain CPS strategy] more frequently
than the others, and why?

7. What was the most difficult OOP concept(s) for the students and how did you
present it?

8. What was the most difficult CPS strategy(s) for the students and how did you
present it?

9. What was the easiest OOP concept for the students and how did you present it?

10. In your opinion, what ideas did students got well during the instruction?

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

144

11. In your opinion, what didn’t work well during the instruction?

12. Were there any CPS strategies emphasized in your class, which did not come out
during the observations or I might not have observed them?

13. Were there any OOP concepts emphasized in your class, which did not come out
during the observations or I might not have observed them?

14. Please explain with examples your overall reaction to the introductory OOP class.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

145

APPENDIX E

Students Interview Protocols

Informal Interview

1. Please tell me about yourself (first interview only).

2. During the past week [certain OOP concept] and [certain CPS strategy]
was taught and/or emphasized. What is your understanding o f it?

3. Please explain specifically what CPS strategy(s) learned in the class helped you to
solve your assignments.

4. Please explain specifically what programming concepts learned in the class helped
you to solve your assignments.

5. What other kind(s) o f CPS strategy(s) not learned during classroom instruction you
are planning to utilize and/or utilized to solve your assignment(s)?

6. Please explain specifically what CPS strategy(s) learned in the class did or did not
help you to solve your assignments.

7. How did you explore ideas to solve the given problems?

8. Please explain your debugging process?

9. How do you feel about the assignment(s) assigned and/or returned during the last
two weeks?

Problem solving Interviews

1. How did you explore ideas to solve the given problem?

2. Please describe your approach to find the solution for the problem 1.

3. Please describe your approach to find the solution for the problem 2.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

146

4. Please describe area(s) where you got stuck, please provide examples.

5. Why did your approach to problem-solving on any given problem worked? why it
didn't work?

6. Your instructor stressed [certain CPS strategies] during the class, how did these
CPS strategies help you in solving the given problems?
7. Your instructor stressed [certain OOP concepts] during the class, how did these
OOP concepts help you in solving the given problems?

8. Please explain your debugging approaches and processes for the given problems.

9. Summarize what you have learned so far about CPS and programming.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

147

APPENDIX F

Weekly Lesson Contents

Week Monday Tuesday Wednesday Thursday Friday
I T:

Introduction,
C++
constructs,
VISUAL C++
IS: PPL, TB,
LS, WHE, PE,
I

T : C++ data
Types,
definitions
objects etc.
IS : PPL,
TB, LS,
WHE, I

T: control flow
& data
concepts.
IS: PPL, TB,
LS, I

T: C++
concepts
IS: PPL, TB,
LS, WHE,
PE, Q. I

No Class

II T: Describing
and declaring
classes,
control flow
concepts IS:
PPL, TB, LS,
WHE, PE, I

T: Data
concepts,
input/output,
IS: PPL,
TB, LS,
WHE, PE, I

T: Functions,
Class
declaration &
implementation
IS: PPL, TB,
LS, WHE, PE,I

T: Libraries,
Accumulator
Class.
IS: PPL, TB,
LS, WHE,
PE, I

T: Libraries,
functions
revisited
IS: PPL, TB,
LS, WHE,
PE, Q, I

III T: Basic C++
control
Structures,
selection
IS: PPL, TB,
WHE, PE, I

T:
expressions,
IS: PPL,
TB, WHE,
PE, I

T: Selection
IS: PPL, TB,
WHE, PE, I

T :
Repetition
IS: PPL, TB,
WHE, PE, I

Selection
and
repetition
IS: PPL, TB,
WHE, PE, I,
Mid-term
exam

IV T: Additional
Control
Structures
IS: PPL, TB.
WHE, PE, I

T: Nested
loops
IS: PPL,
TB, WHE,
PE, I

T : control flow
concepts, data
concepts.
Input/output
concepts
IS:PPL, TB,
WHE, PE, I

T: data
concepts,
developing
your own
classes
IS: PPL, TB,
WHE, PE, I

T: C++
concepts,
control flow
concepts
IS: PPL, TB,
LS, WHE,
PE, I

V T: member
functions
IS: PPL, TB,
WHE, PE

T: free
functions,
introduction
to arrays.
IS: PPL,
TB, WHE,
PE

T: one
dimensional
arrays
IS: PPL, TB,
WHE, PE

T: two
dimensional
arrays.
IS: PPL, TB,
WHE, PE

Final exam

Coding: Topics (T); IS: Instructional Strategy; Power Point Lecture (PPL); Text Bound (TB);
Lab Session (LS); Written Homework Exercises (WHE); Programming Exercises (PE); Quiz
(Q); Student-Instructor, office hour Interaction (I);

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

148

Weekly Content Description

Week I - Chapter 1: Introduction to Object Technology

Primary concept: A computer program is a specification o f some computation. A
program operates on data that it receives (input) and delivers results (output). Object-
oriented programs organize the conceptual entities in a program as objects. Objects are
described by object types, which encapsulate the attributes and operations supported
by all objects o f that type.

General concepts: Objects, object types, object attributes, object actions/operations,
algorithms, input and output

C++ constructs: C++ identifiers, the main() function, statements, comments, include
statements

The C++ programming environment: source code, compiling, preprocessing, linking
example object types.

Chapter 2: Basic C++ Types and Programs

Primary concept: A program consists o f instructions and data. Instructions are
organized as statements, which define the order in which operations are executed. The
data is organized as objects, which are defined by types. Types specify the values that
an object can hold and the operations that can be used to manipulate those values.
Expressions are combinations o f objects and operations on the values o f those objects
that result in new object values. The order in which expressions are evaluated is
determined by the order o f the statements in which they appear.

Control flow concepts: The order in which things happen in a program is called the
flo w o f control. The primary unit o f program control is a statement. Statements
execute in the order in which appear in the program text, unless that order is changed
by some control structure. Most statements contain expressions, which are evaluated
when the statement is executed. The order in which the operations in the expression
are evaluated is determined by associativity and precedence. After a subexpression is
evaluated, the value it produced is used in the expression in which it appears.

Data concepts: An object has a name, a type and a value. C++ defines primitive object
types that hold single values such as integers, real numbers and characters. The value
o f a primitive type object can be changed by assignment, and the assigned value for
the object remains until it is reassigned in a later statement. When an object's name
appears in an expression, that object's value is used in evaluating the expression.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

149

Operators define the operations that can be applied to primitive type objects. The
basic operators implement mathematical operations such as addition and
multiplication. Each object type requires a different representation o f that data that it
holds, and data can be translated between the representations for different types
through type conversion. Type conversion can be implicit or explicit. The collective
value o f all objects in a program is called the program state. The program state at any
particular time is the only thing that has any memory o f what has occurred earlier in
the program.

Input and output concepts: The data that a program receives and the data that it
delivers are controlled by input and output streams. Streams are abstractions o f data
flows. The primary source o f input data is the keyboard and the prim ary receiver o f
output data is the computer display. Streams control when data is moved between the
program and the I/O devices. Streams also translate data between internal and external
representations. All data external to the program is represented as a sequence o f
characters. The internal representation o f data depends on the type o f the object that
holds that data.

C++ concepts: Primitive types: int, short, long, float, double, char
declaration statements and object value initialization
constant objects literal objects: literals have no name and are identified directly by
their value arithmetic operators: + - * / % = assignment operator: =, object values are
changed by the assignment o f new values precedence and associativity o f operators
implicit and explicit type conversions I/O streams (cin and cout), stream operators
(« and ») , stream manipulators (setw, setreal)

W eek II - Chapter 3: Describing and Declaring Classes

Primary concepts: Classes introduce new object types. The value o f objects o f a class
type is defined by the attributes o f the class. Attributes are also called data members.
TTie operations that can be applied to objects o f a class type are defined by the member
functions o f the class. The collective value o f the attributes o f an object is called the
object state. Member functions act as mini-programs: the accept input through the
function arguments, deliver results through the function return value and change the
object state through assignment o f new values to the object's attributes. Free functions
are functions that are not associated with any particular object class. Free functions
may affect the program state.

Control flow concepts: W hen a function name appears in an expression, control is
turned over to the implementation o f the function. When the function completes, the
control returns to the expression from which the function was called and the return
value o f the function is used as the function's value in the expression.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

150

Data concepts: Classes define object types by encapsulating state in private attributes
and providing functionality through public member functions. Classes provide
information hiding by preventing access to private members. This allows the internal
representation and operation o f objects to be changed without affecting programs that
use the public operations. When objects are created, initial values for the attributes o f
the object are given by a special member function called a constructor.

I/O concepts: The information that a program delivers can be presented through means
other than output streams. For example, that information may be displayed
graphically. The EZDraw library is an example o f an output library that converts
information to a graphical representation.

It utilizes classes that control the graphic display by encapsulating display information
in objects that correspond to graphical objects.

C++ concepts: Arguments: Formal arguments are place-holders for values to be
supplied when the function is executed. Actual arguments are the values supplied at
the point from which the function is called.

Function prototypes: a prototype defines a function’s name and the types o f its
arguments and return value

Declaration statements for class objects: initialization is implemented by providing
arguments to the constructor. Class declaration syntax, private and public members,
data members and member functions, default values in function prototypes: default
values are used if actual values are not provided when the function is called.

Free function implementations and return statements:

Libraries and examples:
Math library functions (sqrt, pow, etc.)
EZDraw library classes: RectShape, CircleShape
The Accumulator class provides a very simple example that illustrates all the
important concepts for declaring classes and using class objects.

W eek III - Chapter 4: Basic C++ Control Structures

Primary concept: The flow o f control o f a program can be determined as a program
runs, by the evaluation o f true/false expressions based on the current program state.
Control structures for selection and repetition control the execution o f other statements

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

151

by evaluating some boolean expression and then determining what to do based on that
value.

Control flow concepts: Selection is the choice between option statements and
repetition is repeated execution o f some statement. Both selection and repetition
constructs are treated as single statements, which execute by controlling the sequence
o f execution o f the statements that constitute their body.

Data concepts: The boolean data type defines objects and expression that have values
from the set {true, false}. Boolean expressions are composed o f relational operators
that perform comparisons and logical operators that combine boolean values.

C++ concepts: Primitive type bool
Relational operators (= , !=, <=, etc.), logical operators (&&, | | , !), logical
expressions
Compound statements (block statements)
Precedence o f all operators
Selection: if and if7else statements
Repetition: while and do-while loops

W eek IV - Chapter 5: Developing Your Own Classes

Primary concept: The implementation o f class member functions provides the
specification o f the computations to be performed for the operations on class objects.
Class member functions are similar to free functions, except that they also have direct
access to the attributes (and other private members) o f class objects.

Control flow concepts: As with free functions, flow o f control is passed to the function
implementation when the function is called. Control returns to the calling point when
the function terminates. Any changes to object state or program state that occurred
during the execution o f the function remain once the function terminates.

Program design concepts: designing and implementing new classes for specific
problems

C++ concepts: member function implementations
Scope resolution operator (::)
Constructor implementations and constructor initialization lists
Organizing program source code, defining new header files
Private member functions for class utilities

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

152

W EEK IV - Chapter 6: Additional C++ Control Structures

Primary concepts: Control structures can be nested, with one control structure
appearing in the statement controlled by another. Any nested statement is executed in
its entirety every time it is encountered in the during the nesting statement.
Text files provide persistent copies o f data external to a program. The data in text files
is represented as a sequence o f characters and can be read or written by file streams,
using the same extraction and insertion operators previously used for the keyboard and
display.

Reference arguments allow for an additional means for receiving data from functions.
Arguments are normally passed to a function by creating new objects in the function,
which are assigned the same values as the actual arguments. The names o f reference
arguments within a function simply become aliases for the actual arguments. This
means that any changes that a function makes to the value o f reference arguments are
actually made to the original objects supplied as actual arguments when the function
was called.
Control flow concepts: nested control structures, special control structures for special
case selection and repetition, break and continue statements for modifying the usual
flow o f control within a control structure.

Data concepts: reference parameters, file stream types.

I/O concepts: Using text files to hold data external to a program. Using stream objects
to read and write text file data.

C++ concents: nested if statements and the dangling else problem;
Switch statements, break statements;
nested loops for loops, break and continue statements;
pass by value and reference arguments;
text file streams; ifstream and ofstream, opening and closing file streams;

W EEK V- Chapter 7: Arrays

Primary concent: Arrays allow a collection o f objects o f the same type to be stored
with a single name. Individual objects within an array are identified by integer
indexes. Partially filled arrays are arrays in which not all objects hold useful values.
Ordered arrays are arrays in which the values o f objects have a particular order based
on some comparison function defined on those values. Looked at to methods for
keeping arrays ordered: (i) by restricting the operations on the array such that the
operations that change values in the array (insertion and deletion) are guaranteed to

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

153

keep the values ordered and (ii) by sorting the values after they have been placed in
the array.

Data concepts: Arrays are a first example o f a data structure. Data structures collect
object values in an organized manner.

Program design concepts: Algorithms for modifying and accessing partially filled
arrays (ordered and unordered). The selection sort algorithm.

C++ concepts: the array data type, declaring arrays, indexing arrays.
Arrays as arguments (arrays are passed by reference) not covered on final: random
number generation (sections 7-6, 7-9), multidimensional arrays (section 7-13).

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

154

APPENDIX G

Formal Interview Problems

Set I

Directions: For the following problem 1 a solution is proposed. Errors are embedded
in problem 1. Please review the provided solution, explain your understanding o f the
expectation in the problem, debug the errors and provide the expected output.

1. AVERAGE-PRODUCT -PROBLEM 1

^include <iostream.h>
void main ()

{
int numO, num l, num2, num3, num4;
co u t« “Please enter the values « endl;
cin » numO;
cin » num 1;
cin » num2
cin » num3 » num4;
c o u t« “Thank you for your input” « endl;
sum = (numO+ num l + num2 + Num3 + num4;
average = sum/4;
co u t« “The average is:” « average « endl;
c o u t« “The product is:” « p roduct« endl;
numO * num l * num2 * num3 * num4 = product;

}

Directions: For the following problem 2 develop an entire computer solution. Explain
your understanding o f the expectation in the problem. Correct errors (if any) in the
solution and generate the correct output.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

155

2. CASH-REGISTER - PROBLEM 2

A cash register uses an automated coin machine to help make change. We
assume that a clerk is handed money to pay for purchases. For change, the clerk
returns to the customer any paper money and directs the coin machine to distribute any
change less than $1. In this problem you are to simulate the actions o f the clerk and
the machine. Write a program that prints the amount o f purchase, the payment, and
the amount that must be returned as real numbers. Your algorithm solution should use
the example o f paying $10.00 to cover the purchase o f $3.08-the change is $6.92.
Then indicate the number o f dollars, quarter, dimes, nickels, and pennies that makeup
the change total. Use the following output format:

Purchase Total 3.08
Payment 10.00
Change 6.92
Dollars 6
Quarters 3
Dimes I
Nickels 1
Pennies 2

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

156

Set II

Directions: For the following problem 1 a solution is proposed. Errors are embedded
in problem 1. Please review the provided solution, explain your understanding o f the
expectation in the problem, debug the errors and provide the expected output.

PLAYER-STATUS- PROBLEM 1

The Player-Status class described here and implemented in the supplied Visual C++
project has an error. The project includes a test program that indicates one possible
sequence o f events that result in this error. Determine the cause o f the error and
correct it.

// PlayerStatus.h
// Declaration o f class PlayerStatus
// See problem statement for descriptions o f attributes and Operations.

#define PLAYERSTATUS_DOT_H
#define PLAYERSTATUS_DOT_H

class PlayerStatus
{
public:

// Constructor
PlayerStatus();

// accessor Operations

short currentHealth();
short currentArmorO;
long currentMoney();
short currentFood();
short currentSkillPoints();

// modifier Operations

void receiveFood(short amount);
void receiveArmor(short amount);
void receiveMoney(long amount);
void receiveSkillPoints(short _points);

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

157

bool loseHealth(short _amount);
bool receiveDamage(short amount);
bool spendMoney(long _amount);

booltradeSkillForMoney(short_skill_spent, long money received);
bool tradeSkillForFood(short _skill_spent, short _food_received);
bool consumeFood(short _amount);

private:

// attributes
short food;
short health;
short armor;
short skill_points;
long money;

1;

#endif

// P layerStatus.cpp
//
// Implementation o f methods for class PlayerStatus
//

^include "PlayerStatus.h"

PlayerStatus: :PlayerStatus()
: health(lOO), food(O), armor(O), skill_points(0), money(O)
{
>

short PlayerStatus::currentHealth()
{

return health;
}

short PlayerStatus: :currentArmor()
{

return armor;
}

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

158

long PlayerStatus::currentMoney()
{

return money;
}

short PlayerStatus::currentFood()
{

return food;
>

short PlayerStatus: :currentSki llPoints()
{

return skill_points;
1

void PlayerStatus: :receiveFood(short amount)
{

// food attribute is limited to 100
if ((food + amount) > 100)

food = 100;
else

food += _amount;
1

void PlayerStatus::receiveArmor(short amount)
{

// armor attribute is limited to 100
if ((armor + _amount) > 100)

armor = 100;
else

armor += _amount;
}

void PlayerStatus: :receiveMoney(long amount)
{

money += amount;
}

void PlayerStatus: :receiveSkillPoints(short _points)
{

// skill points attribute is limited to 100
if ((skill_points + _points) > 100)

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

159

skilljpoints = 100;
else

skill_points += _points;
}

bool PlayerStatus: :loseHealth(short amount)
{

// health cannot be less than zero
if (amount > health)

health = 0;
else

health -= _amount;
return true;

1

bool PlayerStatus::receiveDamage(short damage)
{

// armor will absorb up to 50% o f damage
short arm ordam age = _damage/2;
if (armor damage > armor)

arm ordam age = armor;
armor -= arm ordam age;

// damage not absorbed by armor affects health

health -= damage - armor damage;

return true;
1

bool PlayerStatus::spendMoney(long amount)
{

// do not spend any money if player does not have required amount
if (_amount > money)

return false;
money -= amount;
return true;

1

bool PlayerStatus: :tradeSkillForMoney(short skill spent, long money received)
{

// do not trade any skill points if player does not have required amount
i f (_skill_spent > skill_points)

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

160

return false;

// do not trade skill points o f money received is insufficient
if (_skill_spent > m oneyreceived)

return false;

skill_points -= _skill_spent;
money += _money_received;
return true;

1

boolPlayerStatus::tradeSkillForFood(short _skill_spent, short foodreceived)
{

// do not trade any skill points if player does not have required amount
if (_skill_spent > skill_points)

return false;

// do not trade skill points o f food received is insufficient
if (skill spent > _food_received)

return false;

skill_points -= sk illsp en t;
food += foodreceived;
return true;

\

bool PlayerStatus::consumeFood(short _amount)
{

// do not consume anything if player has no food
if (food = 0) return false;

// limit amount consumed to amount available
if (_amount > food)

amount = food;

// consume food by moving food points to health points
food -= amount;
health += amount;

return true;

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

161

// test_p layer, cpp
//
// Test program that executes a sequence o f events that illustrates
// possibility o f out o f range values for health attribute.

#include <iostream.h>
#include <iomanip.h>

#include "PlayerStatus.h"

void displayPlayerStatus(PlayerStatus status)
{

cout « setw(10) « "health :" « setw(5) « status.currentHealth();
c o u t« setw(lO) « "m oney:" « setw(5) « status.currentMoney();

co u t« endl;
c o u t« setw(10) « "armor: " « setw(5) « status.currentArmor();

c o u t« setw(10) « "food: " « setw(5) « status.currentFood();
co u t« endl;

c o u t« setw(10) « "sk ill:" « setw (5)« status.currentSkillPoints();
c o u t« endl;

1

void main()
{

co u t« "Testing PlayerStatus class:" « endl « endl;

PlayerStatus player 1;

c o u t« endl « "New player's status:" « endl;
displayPlayerStatus(playerl);

playerl .receiveArmor(20);
playerl .receiveDamage(40);

c o u t« endl « "Player's status after battle:" « endl;
displayPlayerStatus(playerl);

playerl .receiveSkillPoints(50);
playerl .tradeSkillForFood(50,100);
playerl .consumeFood(40);

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

162

c o u t« endl « "Player's status after working and eating:" « endl;
displayPlayerStatus(playerl);

c o u t« endl;

}

/* PROGRAM OUTPUT:

Testing PlayerStatus class:

New player’s status:

health: 100 money: 0
armor: 0 food: 0
skill: 0

Player's status after battle:
health: 80 money: 0
armor: 0 food: 0
skill: 0

Player's status after working and eating:
health: 120 money: 0
armor: 0 food: 60
skill: 0

*/

Directions: For the following problem 2 develop an entire computer solution. Explain
your understanding o f the expectation in the problem. Correct errors (if any) in the
solution and generate the correct output..

TRIP-TRACKER PROBLEM 2

A Trip-Tracker is used to monitor gas consumption and the cost o f gas while traveling.
Each time the user stops to buy gas, they will enter the amount o f gas, the cost o f the
gas and the miles driven since the last stop. The Trip-Tracker accumulates this
information and uses it to compute the average miles-per-gallon for the trip and the
cost-per-mile o f the trip. The beginning o f a trip is determined by the creation o f the
Trip-Tracker object, or by a call to the reset() operation. Write a C++ program to
implement the required member functions o f the Trip-Tracker class.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

163

APPENDIX H

Sample Class Work Problems

Sample class work problems from students’ written homework assignments,
programming assignments quizzes, midterm and final exams.

RE-WRITE A LOOP

1. Rewrite the following code fragment using a while loop,

float angle;
for (angle = 0.0; angle <=PI; angle +=0.1)

co u t« sin (angle) « endl;

GRADE-RECORD

2. The C++ declarations for a GradeRecord class are given below. The
attributes store a student’s ID and their accumulated grade units and grade points. The
functionality o f the operations is described by the comments in the C++ declaration.

class GradeRecord
{
public:

// The constructor initialized the values o f the attributes
GradeRecord (String ID, int gunits=0, int gp ts= 0);
// Function gpa () computes and returns the students current
// grade point average, using the accumulated values o f
// grade points and grade units,
double gpa () ;
// Function writeGradelnfo () sends a report on the student’s
// grade status to the printer,
void writeGradelnfo () ;
// Function updateGradelnfo () adds additional grade units and
// grade points to the accumulated values,
void updateGradelnfo (int newunits, int new gpts);

private:__

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

164

String studentID;
int gradepts;
int units;

} ;

(a) Give a statement that will create a GradeRecord object for a student
named Frank Black whose student ID is 222-33-7777 and who currently
has 20 grade units and 58 grade points.

(b) Is it possible to change the student id stored in Frank's GradeRecord,
after the object has been created? If it is give a statement to do it. If it is
not, explain why.

(c) Frank just completed a semester o f 16 units for which he earned 43 grade
points. Give statements to update his grade record and then print his new
grade point average to the display console.

(d) A student is on the dean's list o f honor students if that student's grade
point average is above 3.3. Create a boolean object called deans list.
Use Frank's grade record to set deans_list to true or false to indicate
whether he should be placed on the dean’s list.

COST-OF-FENCE

3. A company builds 4 foot high chain link fences, whose cost depends on the
length o f the fence and the number o f gates. Each gate is 3 feet wide and costs
$75. The chain link portion o f the fence costs $12 per foot. To handle customers,
we design the Fence class with integer attribute numberOfGates and real number
attributes fence-Length and totalCost. The length o f the fence includes the width
o f the gates. The constructor takes as arguments the total fence length and the
number o f gates and uses them to initialize the attributes. It is assumed that the
fence is long enough to accommodate the required number o f gates. The member
function, getTotalCost(), returns the total cost o f the fence.

(a) Give the prototype for the constructor.
(b) Give the prototype for the function getTotalCost().
(c) Develop a declaration for the Fence class.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

165

SALARY-CLASS

4. Write a program that inputs the number o f hours worked by the full time employee
Fred Barnes and the number o f hours worked by the part time employee Sandy Rose.
All company employees are paid $18.00 per hour. Place the implementation o f the
class salary. Declare the Salary objects fred and sandy that represent these employees.
Output just the salary and retirement benefit information for Fred and complete salary
information for Sandy.

ACCUMULATOR-CLASS

5. Modify the Accumulator class so that it can compute and return the average o f
the numbers that form the total. Do this by adding a new data member, count, that is
initialized to 1 by the constructor. The value o f count is increased by 1 at each
execution o f addValueQ. A new m em ber function, average(), returns total/count.

class Accumulator
{

private:
// total accumulated by the object double total;
// number o f values accumulated in total int

count;
public:

// constructor, initialize total and assign count = 1
Accumulator (double value = 0);

// return total
double getTotal () ;

// add value to total and increment count
void addValue (double value = 1);

// return total / count
double average () ;

} ;

(a) Implement the constructor.
(b) Implement addValue().
(c) Implement averageQ.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

166

MONEY-CLASS

6. The Money class defines objects that hold an amount o f money.
The value o f the money can be accessed as either dollars or cents.

class Money
{
public:

// The constructor accepts an initial value in dollars
[Money (float init dollars=0);

// these operations allow the value to be
// modified using argument values in dollars or cents
void addDollars (float d o lla rs);
|void addCents (long cen ts);

// these operations allow the value to be
// accessed with values in dollars or cents
float amountlnDollars () ;
long amountlnCents () ;

private:
// the dollar value o f the money is stored in this attribute
float a m o u n tin d o lla rs ;

 Li__

Here is the implementation o f one o f the member functions:

void Money: :addCents (long cents)
{

a m o u n tin d o lla rs = amount_in_dollars + cents/100.0;
1

Give implementations for the remaining four member functions o f class Money.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

